]>
Commit | Line | Data |
---|---|---|
a85b19a7 JW |
1 | |
2 | `timescale 1ns / 1ps | |
6d070aee | 3 | module SimROM( |
a85b19a7 JW |
4 | input [15:0] address, |
5 | inout [7:0] data, | |
6 | input clk, | |
7 | input wr, rd); | |
8 | ||
a8f4468d | 9 | reg rdlatch = 0; |
2854e399 JW |
10 | reg [7:0] odata; |
11 | ||
6d070aee | 12 | reg [7:0] rom [32767:0]; |
a85b19a7 JW |
13 | initial $readmemh("rom.hex", rom); |
14 | ||
15 | wire decode = address[15:13] == 0; | |
a8f4468d JW |
16 | always @(posedge clk) begin |
17 | rdlatch <= rd && decode; | |
2854e399 | 18 | odata <= rom[address[10:0]]; |
a8f4468d JW |
19 | end |
20 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
a85b19a7 JW |
21 | endmodule |
22 | ||
91c74a3f JW |
23 | module BootstrapROM( |
24 | input [15:0] address, | |
25 | inout [7:0] data, | |
26 | input clk, | |
27 | input wr, rd); | |
28 | ||
a8f4468d | 29 | reg rdlatch = 0; |
e29171aa | 30 | reg [7:0] addrlatch = 0; |
49c326da JW |
31 | reg romno = 0, romnotmp = 0; |
32 | reg [7:0] brom0 [255:0]; | |
33 | reg [7:0] brom1 [255:0]; | |
34 | ||
35 | initial $readmemh("fpgaboot.hex", brom0); | |
36 | initial $readmemh("gbboot.hex", brom1); | |
6d070aee JW |
37 | |
38 | `ifdef isim | |
39 | initial romno <= 1; | |
40 | `endif | |
91c74a3f JW |
41 | |
42 | wire decode = address[15:8] == 0; | |
49c326da | 43 | wire [7:0] odata = (romno == 0) ? brom0[addrlatch] : brom1[addrlatch]; |
e29171aa | 44 | always @(posedge clk) begin |
a8f4468d | 45 | rdlatch <= rd && decode; |
e29171aa | 46 | addrlatch <= address[7:0]; |
49c326da JW |
47 | if (wr && decode) romnotmp <= data[0]; |
48 | if (rd && address == 16'h0000) romno <= romnotmp; /* Latch when the program restarts. */ | |
e29171aa | 49 | end |
a8f4468d | 50 | assign data = rdlatch ? odata : 8'bzzzzzzzz; |
91c74a3f JW |
51 | endmodule |
52 | ||
53 | module MiniRAM( | |
6bd4619b JW |
54 | input [15:0] address, |
55 | inout [7:0] data, | |
56 | input clk, | |
57 | input wr, rd); | |
58 | ||
59 | reg [7:0] ram [127:0]; | |
60 | ||
61 | wire decode = (address >= 16'hFF80) && (address <= 16'hFFFE); | |
a8f4468d | 62 | reg rdlatch = 0; |
6bd4619b | 63 | reg [7:0] odata; |
a8f4468d | 64 | assign data = rdlatch ? odata : 8'bzzzzzzzz; |
6bd4619b | 65 | |
68ce013e | 66 | always @(posedge clk) |
6bd4619b | 67 | begin |
a8f4468d JW |
68 | rdlatch <= rd && decode; |
69 | if (decode) // This has to go this way. The only way XST knows how to do | |
70 | begin // block ram is chip select, write enable, and always | |
6bd4619b JW |
71 | if (wr) // reading. "else if rd" does not cut it ... |
72 | ram[address[6:0]] <= data; | |
73 | odata <= ram[address[6:0]]; | |
74 | end | |
75 | end | |
c279b666 | 76 | endmodule |
6bd4619b | 77 | |
74610a87 JW |
78 | module CellularRAM( |
79 | input clk, | |
80 | input [15:0] address, | |
81 | inout [7:0] data, | |
82 | input wr, rd, | |
83 | output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK, | |
8e36c4ed | 84 | output wire st_nCE, st_nRST, |
74610a87 JW |
85 | output wire [22:0] cr_A, |
86 | inout [15:0] cr_DQ); | |
87 | ||
88 | parameter ADDR_PROGADDRH = 16'hFF60; | |
89 | parameter ADDR_PROGADDRM = 16'hFF61; | |
90 | parameter ADDR_PROGADDRL = 16'hFF62; | |
91 | parameter ADDR_PROGDATA = 16'hFF63; | |
8e36c4ed | 92 | parameter ADDR_PROGFLASH = 16'hFF65; |
6d070aee | 93 | parameter ADDR_MBC = 16'hFF64; |
74610a87 | 94 | |
a8f4468d JW |
95 | reg rdlatch = 0, wrlatch = 0; |
96 | reg [15:0] addrlatch = 0; | |
97 | reg [7:0] datalatch = 0; | |
98 | ||
74610a87 JW |
99 | reg [7:0] progaddrh, progaddrm, progaddrl; |
100 | ||
1eefdc8e JW |
101 | reg [22:0] progaddr; |
102 | ||
6d070aee JW |
103 | reg [7:0] mbc_emul = 8'b00000101; // High bit is whether we're poking flash |
104 | // low 7 bits are the MBC that we are emulating | |
105 | ||
74610a87 | 106 | assign cr_nADV = 0; /* Addresses are always valid! :D */ |
8e36c4ed | 107 | assign cr_nCE = ~(addrlatch != ADDR_PROGFLASH); /* The chip is enabled */ |
74610a87 JW |
108 | assign cr_nLB = 0; /* Lower byte is enabled */ |
109 | assign cr_nUB = 0; /* Upper byte is enabled */ | |
110 | assign cr_CRE = 0; /* Data writes, not config */ | |
111 | assign cr_CLK = 0; /* Clock? I think not! */ | |
112 | ||
8e36c4ed JW |
113 | assign st_nRST = 1; /* Keep the strataflash out of reset. */ |
114 | assign st_nCE = ~(addrlatch == ADDR_PROGFLASH); | |
115 | ||
116 | wire decode = (addrlatch[15:14] == 2'b00) /* extrom */ || (addrlatch[15:13] == 3'b101) /* extram */ || (addrlatch == ADDR_PROGDATA) || (addrlatch == ADDR_PROGFLASH); | |
74610a87 | 117 | |
6d070aee JW |
118 | reg [3:0] rambank = 0; |
119 | reg [8:0] rombank = 1; | |
120 | ||
a8f4468d | 121 | assign cr_nOE = decode ? ~rdlatch : 1; |
8e36c4ed | 122 | assign cr_nWE = (decode && ((addrlatch == ADDR_PROGDATA) || (addrlatch == ADDR_PROGFLASH) || (mbc_emul[6:0] == 0) || (addrlatch[15:13] == 3'b101))) ? ~wrlatch : 1; |
74610a87 | 123 | |
a8f4468d | 124 | assign cr_DQ = (~cr_nOE) ? 16'bzzzzzzzzzzzzzzzz : {8'b0, datalatch}; |
6d070aee JW |
125 | assign cr_A = (addrlatch[15:14] == 2'b00) ? /* extrom, home bank */ {9'b0,addrlatch[13:0]} : |
126 | (addrlatch[15:14] == 2'b01) ? /* extrom, paged bank */ {rombank, addrlatch[13:0]} : | |
127 | (addrlatch[15:13] == 3'b101) ? /* extram */ {1'b1, 5'b0, rambank, addrlatch[12:0]} : | |
8e36c4ed | 128 | ((addrlatch == ADDR_PROGDATA) || (addrlatch == ADDR_PROGFLASH)) ? progaddr : |
74610a87 JW |
129 | 23'b0; |
130 | ||
a8f4468d | 131 | always @(posedge clk) begin |
74610a87 JW |
132 | case (address) |
133 | ADDR_PROGADDRH: if (wr) progaddrh <= data; | |
134 | ADDR_PROGADDRM: if (wr) progaddrm <= data; | |
135 | ADDR_PROGADDRL: if (wr) progaddrl <= data; | |
1eefdc8e | 136 | ADDR_PROGDATA: if (rd || wr) begin |
3db3fc27 JW |
137 | progaddr <= {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]}; |
138 | {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]} <= {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]} + 23'b1; | |
1eefdc8e | 139 | end |
6d070aee JW |
140 | ADDR_MBC: begin |
141 | mbc_emul <= data; | |
142 | rambank <= 0; | |
143 | rombank <= 1; | |
144 | end | |
74610a87 | 145 | endcase |
6d070aee JW |
146 | |
147 | if (mbc_emul[6:0] == 5) begin | |
148 | if ((address[15:12] == 4'h2) && wr) | |
149 | rombank <= {rombank[8], data}; | |
150 | else if ((address[15:12] == 4'h3) && wr) | |
151 | rombank <= {data[0], rombank[7:0]}; | |
152 | else if ((address[15:12] == 4'h4) && wr) | |
153 | rambank <= data[3:0]; | |
154 | end | |
155 | ||
a8f4468d JW |
156 | rdlatch <= rd; |
157 | wrlatch <= wr; | |
158 | addrlatch <= address; | |
159 | datalatch <= data; | |
160 | end | |
74610a87 | 161 | |
a8f4468d JW |
162 | assign data = (rdlatch && decode) ? |
163 | (addrlatch == ADDR_PROGADDRH) ? progaddrh : | |
164 | (addrlatch == ADDR_PROGADDRM) ? progaddrm : | |
165 | (addrlatch == ADDR_PROGADDRL) ? progaddrl : | |
74610a87 JW |
166 | cr_DQ |
167 | : 8'bzzzzzzzz; | |
168 | endmodule | |
169 | ||
a85b19a7 JW |
170 | module InternalRAM( |
171 | input [15:0] address, | |
172 | inout [7:0] data, | |
173 | input clk, | |
174 | input wr, rd); | |
175 | ||
fe3dc890 | 176 | // synthesis attribute ram_style of ram is block |
616eebe0 | 177 | reg [7:0] ram [8191:0]; |
a85b19a7 | 178 | |
74610a87 | 179 | wire decode = (address >= 16'hC000) && (address <= 16'hFDFF); /* This includes echo RAM. */ |
a85b19a7 | 180 | reg [7:0] odata; |
a8f4468d JW |
181 | reg rdlatch = 0; |
182 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
a85b19a7 | 183 | |
68ce013e | 184 | always @(posedge clk) |
a85b19a7 | 185 | begin |
a8f4468d | 186 | rdlatch <= rd && decode; |
74610a87 JW |
187 | if (decode) // This has to go this way. The only way XST knows how to do |
188 | begin // block ram is chip select, write enable, and always | |
95143d64 | 189 | if (wr) // reading. "else if rd" does not cut it ... |
616eebe0 JW |
190 | ram[address[12:0]] <= data; |
191 | odata <= ram[address[12:0]]; | |
c87db60a | 192 | end |
a85b19a7 JW |
193 | end |
194 | endmodule | |
195 | ||
196 | module Switches( | |
197 | input [15:0] address, | |
198 | inout [7:0] data, | |
199 | input clk, | |
200 | input wr, rd, | |
201 | input [7:0] switches, | |
9c834ff2 | 202 | output reg [7:0] ledout = 0); |
a85b19a7 JW |
203 | |
204 | wire decode = address == 16'hFF51; | |
205 | reg [7:0] odata; | |
a8f4468d JW |
206 | reg rdlatch = 0; |
207 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
a85b19a7 | 208 | |
68ce013e | 209 | always @(posedge clk) |
a85b19a7 | 210 | begin |
a8f4468d | 211 | rdlatch <= rd && decode; |
a85b19a7 JW |
212 | if (decode && rd) |
213 | odata <= switches; | |
214 | else if (decode && wr) | |
215 | ledout <= data; | |
216 | end | |
217 | endmodule | |
218 | ||
e7fb589a JW |
219 | `ifdef isim |
220 | module Dumpable(input [2:0] r, g, input [1:0] b, input hs, vs, vgaclk); | |
221 | endmodule | |
222 | `endif | |
223 | ||
a85b19a7 | 224 | module CoreTop( |
e7fb589a JW |
225 | `ifdef isim |
226 | output reg vgaclk = 0, | |
227 | output reg clk = 0, | |
228 | `else | |
a85b19a7 JW |
229 | input xtal, |
230 | input [7:0] switches, | |
ff7fd7f2 | 231 | input [3:0] buttons, |
a85b19a7 JW |
232 | output wire [7:0] leds, |
233 | output serio, | |
298e8085 | 234 | input serin, |
a85b19a7 | 235 | output wire [3:0] digits, |
00573fd5 | 236 | output wire [7:0] seven, |
8e36c4ed | 237 | output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK, st_nCE, st_nRST, |
74610a87 JW |
238 | output wire [22:0] cr_A, |
239 | inout [15:0] cr_DQ, | |
bc75fc67 | 240 | input ps2c, ps2d, |
e7fb589a | 241 | `endif |
00573fd5 JW |
242 | output wire hs, vs, |
243 | output wire [2:0] r, g, | |
09c1936c JW |
244 | output wire [1:0] b, |
245 | output wire soundl, soundr); | |
e7fb589a JW |
246 | |
247 | `ifdef isim | |
248 | always #62 clk <= ~clk; | |
249 | always #100 vgaclk <= ~vgaclk; | |
250 | ||
251 | Dumpable dump(r,g,b,hs,vs,vgaclk); | |
a85b19a7 | 252 | |
e7fb589a JW |
253 | wire [7:0] leds; |
254 | wire serio; | |
298e8085 | 255 | wire serin = 1; |
e7fb589a JW |
256 | wire [3:0] digits; |
257 | wire [7:0] seven; | |
258 | wire [7:0] switches = 8'b0; | |
259 | wire [3:0] buttons = 4'b0; | |
260 | `else | |
fe3dc890 JW |
261 | wire xtalb, clk, vgaclk; |
262 | IBUFG iclkbuf(.O(xtalb), .I(xtal)); | |
263 | CPUDCM dcm (.CLKIN_IN(xtalb), .CLKFX_OUT(clk)); | |
264 | pixDCM pixdcm (.CLKIN_IN(xtalb), .CLKFX_OUT(vgaclk)); | |
bc75fc67 | 265 | wire [7:0] ps2buttons; |
e7fb589a JW |
266 | `endif |
267 | ||
91c74a3f JW |
268 | wire [15:0] addr [1:0]; |
269 | wire [7:0] data [1:0]; | |
270 | wire wr [1:0], rd [1:0]; | |
f8db6448 | 271 | |
a6b499da | 272 | wire irq, tmrirq, lcdcirq, vblankirq, btnirq; |
f8db6448 | 273 | wire [7:0] jaddr; |
6c46357c | 274 | wire [1:0] state; |
d1b40456 | 275 | wire ack; |
179b4347 | 276 | |
a85b19a7 | 277 | GBZ80Core core( |
179b4347 | 278 | .clk(clk), |
91c74a3f JW |
279 | .bus0address(addr[0]), |
280 | .bus0data(data[0]), | |
281 | .bus0wr(wr[0]), | |
282 | .bus0rd(rd[0]), | |
283 | .bus1address(addr[1]), | |
284 | .bus1data(data[1]), | |
285 | .bus1wr(wr[1]), | |
286 | .bus1rd(rd[1]), | |
f8db6448 | 287 | .irq(irq), |
d1b40456 | 288 | .irqack(ack), |
6c46357c JW |
289 | .jaddr(jaddr), |
290 | .state(state)); | |
a85b19a7 | 291 | |
91c74a3f JW |
292 | BootstrapROM brom( |
293 | .address(addr[1]), | |
294 | .data(data[1]), | |
295 | .clk(clk), | |
296 | .wr(wr[1]), | |
297 | .rd(rd[1])); | |
298 | ||
74610a87 | 299 | `ifdef isim |
6d070aee | 300 | SimROM rom( |
91c74a3f JW |
301 | .address(addr[0]), |
302 | .data(data[0]), | |
a85b19a7 | 303 | .clk(clk), |
91c74a3f JW |
304 | .wr(wr[0]), |
305 | .rd(rd[0])); | |
74610a87 JW |
306 | `else |
307 | CellularRAM cellram( | |
308 | .address(addr[0]), | |
309 | .data(data[0]), | |
310 | .clk(clk), | |
311 | .wr(wr[0]), | |
7c1b9e8e | 312 | .rd(rd[0]), |
74610a87 JW |
313 | .cr_nADV(cr_nADV), |
314 | .cr_nCE(cr_nCE), | |
315 | .cr_nOE(cr_nOE), | |
7c1b9e8e | 316 | .cr_nWE(cr_nWE), |
74610a87 JW |
317 | .cr_CRE(cr_CRE), |
318 | .cr_nLB(cr_nLB), | |
319 | .cr_nUB(cr_nUB), | |
320 | .cr_CLK(cr_CLK), | |
321 | .cr_A(cr_A), | |
8e36c4ed JW |
322 | .cr_DQ(cr_DQ), |
323 | .st_nCE(st_nCE), | |
324 | .st_nRST(st_nRST)); | |
74610a87 | 325 | `endif |
a85b19a7 | 326 | |
fe3dc890 JW |
327 | wire lcdhs, lcdvs, lcdclk; |
328 | wire [2:0] lcdr, lcdg; | |
329 | wire [1:0] lcdb; | |
330 | ||
537e1f83 | 331 | LCDC lcdc( |
537e1f83 | 332 | .clk(clk), |
91c74a3f JW |
333 | .addr(addr[0]), |
334 | .data(data[0]), | |
335 | .wr(wr[0]), | |
336 | .rd(rd[0]), | |
00573fd5 JW |
337 | .lcdcirq(lcdcirq), |
338 | .vblankirq(vblankirq), | |
fe3dc890 JW |
339 | .lcdclk(lcdclk), |
340 | .lcdhs(lcdhs), | |
341 | .lcdvs(lcdvs), | |
342 | .lcdr(lcdr), | |
343 | .lcdg(lcdg), | |
344 | .lcdb(lcdb)); | |
345 | ||
346 | Framebuffer fb( | |
347 | .lcdclk(lcdclk), | |
348 | .lcdhs(lcdhs), | |
349 | .lcdvs(lcdvs), | |
350 | .lcdr(lcdr), | |
351 | .lcdg(lcdg), | |
352 | .lcdb(lcdb), | |
353 | .vgaclk(vgaclk), | |
00573fd5 JW |
354 | .vgahs(hs), |
355 | .vgavs(vs), | |
356 | .vgar(r), | |
357 | .vgag(g), | |
358 | .vgab(b)); | |
6d070aee | 359 | |
bc75fc67 JW |
360 | wire [7:0] sleds; |
361 | `ifdef isim | |
362 | assign leds = sleds; | |
363 | `else | |
364 | assign leds = sleds | ps2buttons; | |
365 | `endif | |
6d070aee JW |
366 | Switches sw( |
367 | .clk(clk), | |
368 | .address(addr[0]), | |
369 | .data(data[0]), | |
370 | .wr(wr[0]), | |
371 | .rd(rd[0]), | |
bc75fc67 | 372 | .ledout(sleds), |
6d070aee JW |
373 | .switches(switches) |
374 | ); | |
a6b499da | 375 | |
bc75fc67 JW |
376 | `ifdef isim |
377 | `else | |
378 | PS2Button ps2( | |
b057a5d6 | 379 | .clk(clk), |
bc75fc67 JW |
380 | .inclk(ps2c), |
381 | .indata(ps2d), | |
382 | .buttons(ps2buttons) | |
383 | ); | |
384 | `endif | |
385 | ||
a6b499da JW |
386 | Buttons ass( |
387 | .core_clk(clk), | |
388 | .addr(addr[0]), | |
389 | .data(data[0]), | |
390 | .wr(wr[0]), | |
391 | .rd(rd[0]), | |
392 | .int(btnirq), | |
bc75fc67 | 393 | `ifdef isim |
a6b499da | 394 | .buttons(switches) |
bc75fc67 JW |
395 | `else |
396 | .buttons(ps2buttons) | |
397 | `endif | |
a6b499da | 398 | ); |
6d070aee | 399 | |
a85b19a7 | 400 | AddrMon amon( |
eb0f2fe1 | 401 | .clk(clk), |
91c74a3f | 402 | .addr(addr[0]), |
eb0f2fe1 JW |
403 | .digit(digits), |
404 | .out(seven), | |
6c46357c JW |
405 | .freeze(buttons[0]), |
406 | .periods( | |
179b4347 JW |
407 | (state == 2'b00) ? 4'b0010 : |
408 | (state == 2'b01) ? 4'b0001 : | |
409 | (state == 2'b10) ? 4'b1000 : | |
410 | 4'b0100) ); | |
a85b19a7 | 411 | |
06ad3a30 | 412 | UART nouart ( /* no u */ |
91c74a3f JW |
413 | .clk(clk), |
414 | .addr(addr[0]), | |
415 | .data(data[0]), | |
416 | .wr(wr[0]), | |
417 | .rd(rd[0]), | |
298e8085 JW |
418 | .serial(serio), |
419 | .serialrx(serin) | |
eb0f2fe1 | 420 | ); |
9aa931d1 | 421 | |
eb0f2fe1 | 422 | InternalRAM ram( |
9aa931d1 | 423 | .clk(clk), |
91c74a3f JW |
424 | .address(addr[0]), |
425 | .data(data[0]), | |
426 | .wr(wr[0]), | |
427 | .rd(rd[0]) | |
eb0f2fe1 | 428 | ); |
6bd4619b JW |
429 | |
430 | MiniRAM mram( | |
6bd4619b | 431 | .clk(clk), |
91c74a3f JW |
432 | .address(addr[1]), |
433 | .data(data[1]), | |
434 | .wr(wr[1]), | |
435 | .rd(rd[1]) | |
6bd4619b | 436 | ); |
06ad3a30 | 437 | |
06ad3a30 JW |
438 | Timer tmr( |
439 | .clk(clk), | |
91c74a3f JW |
440 | .addr(addr[0]), |
441 | .data(data[0]), | |
442 | .wr(wr[0]), | |
443 | .rd(rd[0]), | |
eb0f2fe1 JW |
444 | .irq(tmrirq) |
445 | ); | |
06ad3a30 JW |
446 | |
447 | Interrupt intr( | |
448 | .clk(clk), | |
91c74a3f JW |
449 | .addr(addr[0]), |
450 | .data(data[0]), | |
451 | .wr(wr[0]), | |
452 | .rd(rd[0]), | |
00573fd5 | 453 | .vblank(vblankirq), |
537e1f83 | 454 | .lcdc(lcdcirq), |
06ad3a30 | 455 | .tovf(tmrirq), |
e7fb589a | 456 | .serial(1'b0), |
a6b499da | 457 | .buttons(btnirq), |
06ad3a30 | 458 | .master(irq), |
d1b40456 | 459 | .ack(ack), |
06ad3a30 | 460 | .jaddr(jaddr)); |
09c1936c JW |
461 | |
462 | Soundcore sound( | |
463 | .core_clk(clk), | |
91c74a3f JW |
464 | .addr(addr[0]), |
465 | .data(data[0]), | |
466 | .rd(rd[0]), | |
467 | .wr(wr[0]), | |
09c1936c JW |
468 | .snd_data_l(soundl), |
469 | .snd_data_r(soundr)); | |
a85b19a7 | 470 | endmodule |