]>
Commit | Line | Data |
---|---|---|
a85b19a7 JW |
1 | |
2 | `timescale 1ns / 1ps | |
3 | module ROM( | |
4 | input [15:0] address, | |
5 | inout [7:0] data, | |
6 | input clk, | |
7 | input wr, rd); | |
8 | ||
a8f4468d | 9 | reg rdlatch = 0; |
2854e399 JW |
10 | reg [7:0] odata; |
11 | ||
91c74a3f | 12 | // synthesis attribute ram_style of rom is block |
fe3dc890 | 13 | reg [7:0] rom [1023:0]; |
a85b19a7 JW |
14 | initial $readmemh("rom.hex", rom); |
15 | ||
16 | wire decode = address[15:13] == 0; | |
a8f4468d JW |
17 | always @(posedge clk) begin |
18 | rdlatch <= rd && decode; | |
2854e399 | 19 | odata <= rom[address[10:0]]; |
a8f4468d JW |
20 | end |
21 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
a85b19a7 JW |
22 | endmodule |
23 | ||
91c74a3f JW |
24 | module BootstrapROM( |
25 | input [15:0] address, | |
26 | inout [7:0] data, | |
27 | input clk, | |
28 | input wr, rd); | |
29 | ||
a8f4468d | 30 | reg rdlatch = 0; |
e29171aa | 31 | reg [7:0] addrlatch = 0; |
49c326da JW |
32 | reg romno = 0, romnotmp = 0; |
33 | reg [7:0] brom0 [255:0]; | |
34 | reg [7:0] brom1 [255:0]; | |
35 | ||
36 | initial $readmemh("fpgaboot.hex", brom0); | |
37 | initial $readmemh("gbboot.hex", brom1); | |
91c74a3f JW |
38 | |
39 | wire decode = address[15:8] == 0; | |
49c326da | 40 | wire [7:0] odata = (romno == 0) ? brom0[addrlatch] : brom1[addrlatch]; |
e29171aa | 41 | always @(posedge clk) begin |
a8f4468d | 42 | rdlatch <= rd && decode; |
e29171aa | 43 | addrlatch <= address[7:0]; |
49c326da JW |
44 | if (wr && decode) romnotmp <= data[0]; |
45 | if (rd && address == 16'h0000) romno <= romnotmp; /* Latch when the program restarts. */ | |
e29171aa | 46 | end |
a8f4468d | 47 | assign data = rdlatch ? odata : 8'bzzzzzzzz; |
91c74a3f JW |
48 | endmodule |
49 | ||
50 | module MiniRAM( | |
6bd4619b JW |
51 | input [15:0] address, |
52 | inout [7:0] data, | |
53 | input clk, | |
54 | input wr, rd); | |
55 | ||
56 | reg [7:0] ram [127:0]; | |
57 | ||
58 | wire decode = (address >= 16'hFF80) && (address <= 16'hFFFE); | |
a8f4468d | 59 | reg rdlatch = 0; |
6bd4619b | 60 | reg [7:0] odata; |
a8f4468d | 61 | assign data = rdlatch ? odata : 8'bzzzzzzzz; |
6bd4619b | 62 | |
68ce013e | 63 | always @(posedge clk) |
6bd4619b | 64 | begin |
a8f4468d JW |
65 | rdlatch <= rd && decode; |
66 | if (decode) // This has to go this way. The only way XST knows how to do | |
67 | begin // block ram is chip select, write enable, and always | |
6bd4619b JW |
68 | if (wr) // reading. "else if rd" does not cut it ... |
69 | ram[address[6:0]] <= data; | |
70 | odata <= ram[address[6:0]]; | |
71 | end | |
72 | end | |
c279b666 | 73 | endmodule |
6bd4619b | 74 | |
74610a87 JW |
75 | module CellularRAM( |
76 | input clk, | |
77 | input [15:0] address, | |
78 | inout [7:0] data, | |
79 | input wr, rd, | |
80 | output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK, | |
81 | output wire [22:0] cr_A, | |
82 | inout [15:0] cr_DQ); | |
83 | ||
84 | parameter ADDR_PROGADDRH = 16'hFF60; | |
85 | parameter ADDR_PROGADDRM = 16'hFF61; | |
86 | parameter ADDR_PROGADDRL = 16'hFF62; | |
87 | parameter ADDR_PROGDATA = 16'hFF63; | |
88 | ||
a8f4468d JW |
89 | reg rdlatch = 0, wrlatch = 0; |
90 | reg [15:0] addrlatch = 0; | |
91 | reg [7:0] datalatch = 0; | |
92 | ||
74610a87 JW |
93 | reg [7:0] progaddrh, progaddrm, progaddrl; |
94 | ||
95 | assign cr_nADV = 0; /* Addresses are always valid! :D */ | |
96 | assign cr_nCE = 0; /* The chip is enabled */ | |
97 | assign cr_nLB = 0; /* Lower byte is enabled */ | |
98 | assign cr_nUB = 0; /* Upper byte is enabled */ | |
99 | assign cr_CRE = 0; /* Data writes, not config */ | |
100 | assign cr_CLK = 0; /* Clock? I think not! */ | |
101 | ||
a8f4468d | 102 | wire decode = (addrlatch[15:14] == 2'b00) /* extrom */ || (addrlatch[15:13] == 3'b101) /* extram */ || (addrlatch == ADDR_PROGDATA); |
74610a87 | 103 | |
a8f4468d JW |
104 | assign cr_nOE = decode ? ~rdlatch : 1; |
105 | assign cr_nWE = decode ? ~wrlatch : 1; | |
74610a87 | 106 | |
a8f4468d JW |
107 | assign cr_DQ = (~cr_nOE) ? 16'bzzzzzzzzzzzzzzzz : {8'b0, datalatch}; |
108 | assign cr_A = (addrlatch[15:14] == 2'b00) ? /* extrom */ {9'b0,addrlatch[13:0]} : | |
109 | (addrlatch[15:13] == 3'b101) ? {1'b1, 9'b0, addrlatch[12:0]} : | |
110 | (addrlatch == ADDR_PROGDATA) ? {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]} : | |
74610a87 JW |
111 | 23'b0; |
112 | ||
113 | reg [7:0] regbuf; | |
114 | ||
a8f4468d | 115 | always @(posedge clk) begin |
74610a87 JW |
116 | case (address) |
117 | ADDR_PROGADDRH: if (wr) progaddrh <= data; | |
118 | ADDR_PROGADDRM: if (wr) progaddrm <= data; | |
119 | ADDR_PROGADDRL: if (wr) progaddrl <= data; | |
120 | endcase | |
a8f4468d JW |
121 | rdlatch <= rd; |
122 | wrlatch <= wr; | |
123 | addrlatch <= address; | |
124 | datalatch <= data; | |
125 | end | |
74610a87 | 126 | |
a8f4468d JW |
127 | assign data = (rdlatch && decode) ? |
128 | (addrlatch == ADDR_PROGADDRH) ? progaddrh : | |
129 | (addrlatch == ADDR_PROGADDRM) ? progaddrm : | |
130 | (addrlatch == ADDR_PROGADDRL) ? progaddrl : | |
74610a87 JW |
131 | cr_DQ |
132 | : 8'bzzzzzzzz; | |
133 | endmodule | |
134 | ||
a85b19a7 JW |
135 | module InternalRAM( |
136 | input [15:0] address, | |
137 | inout [7:0] data, | |
138 | input clk, | |
139 | input wr, rd); | |
140 | ||
fe3dc890 | 141 | // synthesis attribute ram_style of ram is block |
616eebe0 | 142 | reg [7:0] ram [8191:0]; |
a85b19a7 | 143 | |
74610a87 | 144 | wire decode = (address >= 16'hC000) && (address <= 16'hFDFF); /* This includes echo RAM. */ |
a85b19a7 | 145 | reg [7:0] odata; |
a8f4468d JW |
146 | reg rdlatch = 0; |
147 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
a85b19a7 | 148 | |
68ce013e | 149 | always @(posedge clk) |
a85b19a7 | 150 | begin |
a8f4468d | 151 | rdlatch <= rd && decode; |
74610a87 JW |
152 | if (decode) // This has to go this way. The only way XST knows how to do |
153 | begin // block ram is chip select, write enable, and always | |
95143d64 | 154 | if (wr) // reading. "else if rd" does not cut it ... |
616eebe0 JW |
155 | ram[address[12:0]] <= data; |
156 | odata <= ram[address[12:0]]; | |
c87db60a | 157 | end |
a85b19a7 JW |
158 | end |
159 | endmodule | |
160 | ||
161 | module Switches( | |
162 | input [15:0] address, | |
163 | inout [7:0] data, | |
164 | input clk, | |
165 | input wr, rd, | |
166 | input [7:0] switches, | |
9c834ff2 | 167 | output reg [7:0] ledout = 0); |
a85b19a7 JW |
168 | |
169 | wire decode = address == 16'hFF51; | |
170 | reg [7:0] odata; | |
a8f4468d JW |
171 | reg rdlatch = 0; |
172 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
a85b19a7 | 173 | |
68ce013e | 174 | always @(posedge clk) |
a85b19a7 | 175 | begin |
a8f4468d | 176 | rdlatch <= rd && decode; |
a85b19a7 JW |
177 | if (decode && rd) |
178 | odata <= switches; | |
179 | else if (decode && wr) | |
180 | ledout <= data; | |
181 | end | |
182 | endmodule | |
183 | ||
e7fb589a JW |
184 | `ifdef isim |
185 | module Dumpable(input [2:0] r, g, input [1:0] b, input hs, vs, vgaclk); | |
186 | endmodule | |
187 | `endif | |
188 | ||
a85b19a7 | 189 | module CoreTop( |
e7fb589a JW |
190 | `ifdef isim |
191 | output reg vgaclk = 0, | |
192 | output reg clk = 0, | |
193 | `else | |
a85b19a7 JW |
194 | input xtal, |
195 | input [7:0] switches, | |
ff7fd7f2 | 196 | input [3:0] buttons, |
a85b19a7 JW |
197 | output wire [7:0] leds, |
198 | output serio, | |
199 | output wire [3:0] digits, | |
00573fd5 | 200 | output wire [7:0] seven, |
74610a87 JW |
201 | output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK, |
202 | output wire [22:0] cr_A, | |
203 | inout [15:0] cr_DQ, | |
e7fb589a | 204 | `endif |
00573fd5 JW |
205 | output wire hs, vs, |
206 | output wire [2:0] r, g, | |
09c1936c JW |
207 | output wire [1:0] b, |
208 | output wire soundl, soundr); | |
e7fb589a JW |
209 | |
210 | `ifdef isim | |
211 | always #62 clk <= ~clk; | |
212 | always #100 vgaclk <= ~vgaclk; | |
213 | ||
214 | Dumpable dump(r,g,b,hs,vs,vgaclk); | |
a85b19a7 | 215 | |
e7fb589a JW |
216 | wire [7:0] leds; |
217 | wire serio; | |
218 | wire [3:0] digits; | |
219 | wire [7:0] seven; | |
220 | wire [7:0] switches = 8'b0; | |
221 | wire [3:0] buttons = 4'b0; | |
222 | `else | |
fe3dc890 JW |
223 | wire xtalb, clk, vgaclk; |
224 | IBUFG iclkbuf(.O(xtalb), .I(xtal)); | |
225 | CPUDCM dcm (.CLKIN_IN(xtalb), .CLKFX_OUT(clk)); | |
226 | pixDCM pixdcm (.CLKIN_IN(xtalb), .CLKFX_OUT(vgaclk)); | |
e7fb589a JW |
227 | `endif |
228 | ||
91c74a3f JW |
229 | wire [15:0] addr [1:0]; |
230 | wire [7:0] data [1:0]; | |
231 | wire wr [1:0], rd [1:0]; | |
f8db6448 | 232 | |
00573fd5 | 233 | wire irq, tmrirq, lcdcirq, vblankirq; |
f8db6448 | 234 | wire [7:0] jaddr; |
6c46357c | 235 | wire [1:0] state; |
179b4347 | 236 | |
a85b19a7 | 237 | GBZ80Core core( |
179b4347 | 238 | .clk(clk), |
91c74a3f JW |
239 | .bus0address(addr[0]), |
240 | .bus0data(data[0]), | |
241 | .bus0wr(wr[0]), | |
242 | .bus0rd(rd[0]), | |
243 | .bus1address(addr[1]), | |
244 | .bus1data(data[1]), | |
245 | .bus1wr(wr[1]), | |
246 | .bus1rd(rd[1]), | |
f8db6448 | 247 | .irq(irq), |
6c46357c JW |
248 | .jaddr(jaddr), |
249 | .state(state)); | |
a85b19a7 | 250 | |
91c74a3f JW |
251 | BootstrapROM brom( |
252 | .address(addr[1]), | |
253 | .data(data[1]), | |
254 | .clk(clk), | |
255 | .wr(wr[1]), | |
256 | .rd(rd[1])); | |
257 | ||
74610a87 | 258 | `ifdef isim |
a85b19a7 | 259 | ROM rom( |
91c74a3f JW |
260 | .address(addr[0]), |
261 | .data(data[0]), | |
a85b19a7 | 262 | .clk(clk), |
91c74a3f JW |
263 | .wr(wr[0]), |
264 | .rd(rd[0])); | |
74610a87 JW |
265 | `else |
266 | CellularRAM cellram( | |
267 | .address(addr[0]), | |
268 | .data(data[0]), | |
269 | .clk(clk), | |
270 | .wr(wr[0]), | |
7c1b9e8e | 271 | .rd(rd[0]), |
74610a87 JW |
272 | .cr_nADV(cr_nADV), |
273 | .cr_nCE(cr_nCE), | |
274 | .cr_nOE(cr_nOE), | |
7c1b9e8e | 275 | .cr_nWE(cr_nWE), |
74610a87 JW |
276 | .cr_CRE(cr_CRE), |
277 | .cr_nLB(cr_nLB), | |
278 | .cr_nUB(cr_nUB), | |
279 | .cr_CLK(cr_CLK), | |
280 | .cr_A(cr_A), | |
281 | .cr_DQ(cr_DQ)); | |
282 | `endif | |
a85b19a7 | 283 | |
fe3dc890 JW |
284 | wire lcdhs, lcdvs, lcdclk; |
285 | wire [2:0] lcdr, lcdg; | |
286 | wire [1:0] lcdb; | |
287 | ||
537e1f83 | 288 | LCDC lcdc( |
537e1f83 | 289 | .clk(clk), |
91c74a3f JW |
290 | .addr(addr[0]), |
291 | .data(data[0]), | |
292 | .wr(wr[0]), | |
293 | .rd(rd[0]), | |
00573fd5 JW |
294 | .lcdcirq(lcdcirq), |
295 | .vblankirq(vblankirq), | |
fe3dc890 JW |
296 | .lcdclk(lcdclk), |
297 | .lcdhs(lcdhs), | |
298 | .lcdvs(lcdvs), | |
299 | .lcdr(lcdr), | |
300 | .lcdg(lcdg), | |
301 | .lcdb(lcdb)); | |
302 | ||
303 | Framebuffer fb( | |
304 | .lcdclk(lcdclk), | |
305 | .lcdhs(lcdhs), | |
306 | .lcdvs(lcdvs), | |
307 | .lcdr(lcdr), | |
308 | .lcdg(lcdg), | |
309 | .lcdb(lcdb), | |
310 | .vgaclk(vgaclk), | |
00573fd5 JW |
311 | .vgahs(hs), |
312 | .vgavs(vs), | |
313 | .vgar(r), | |
314 | .vgag(g), | |
315 | .vgab(b)); | |
537e1f83 | 316 | |
a85b19a7 | 317 | AddrMon amon( |
eb0f2fe1 | 318 | .clk(clk), |
91c74a3f | 319 | .addr(addr[0]), |
eb0f2fe1 JW |
320 | .digit(digits), |
321 | .out(seven), | |
6c46357c JW |
322 | .freeze(buttons[0]), |
323 | .periods( | |
179b4347 JW |
324 | (state == 2'b00) ? 4'b0010 : |
325 | (state == 2'b01) ? 4'b0001 : | |
326 | (state == 2'b10) ? 4'b1000 : | |
327 | 4'b0100) ); | |
a85b19a7 JW |
328 | |
329 | Switches sw( | |
a85b19a7 | 330 | .clk(clk), |
91c74a3f JW |
331 | .address(addr[0]), |
332 | .data(data[0]), | |
333 | .wr(wr[0]), | |
334 | .rd(rd[0]), | |
a85b19a7 | 335 | .ledout(leds), |
fc443a4f | 336 | .switches(switches) |
a85b19a7 JW |
337 | ); |
338 | ||
06ad3a30 | 339 | UART nouart ( /* no u */ |
91c74a3f JW |
340 | .clk(clk), |
341 | .addr(addr[0]), | |
342 | .data(data[0]), | |
343 | .wr(wr[0]), | |
344 | .rd(rd[0]), | |
eb0f2fe1 JW |
345 | .serial(serio) |
346 | ); | |
9aa931d1 | 347 | |
eb0f2fe1 | 348 | InternalRAM ram( |
9aa931d1 | 349 | .clk(clk), |
91c74a3f JW |
350 | .address(addr[0]), |
351 | .data(data[0]), | |
352 | .wr(wr[0]), | |
353 | .rd(rd[0]) | |
eb0f2fe1 | 354 | ); |
6bd4619b JW |
355 | |
356 | MiniRAM mram( | |
6bd4619b | 357 | .clk(clk), |
91c74a3f JW |
358 | .address(addr[1]), |
359 | .data(data[1]), | |
360 | .wr(wr[1]), | |
361 | .rd(rd[1]) | |
6bd4619b | 362 | ); |
06ad3a30 | 363 | |
06ad3a30 JW |
364 | Timer tmr( |
365 | .clk(clk), | |
91c74a3f JW |
366 | .addr(addr[0]), |
367 | .data(data[0]), | |
368 | .wr(wr[0]), | |
369 | .rd(rd[0]), | |
eb0f2fe1 JW |
370 | .irq(tmrirq) |
371 | ); | |
06ad3a30 JW |
372 | |
373 | Interrupt intr( | |
374 | .clk(clk), | |
91c74a3f JW |
375 | .addr(addr[0]), |
376 | .data(data[0]), | |
377 | .wr(wr[0]), | |
378 | .rd(rd[0]), | |
00573fd5 | 379 | .vblank(vblankirq), |
537e1f83 | 380 | .lcdc(lcdcirq), |
06ad3a30 | 381 | .tovf(tmrirq), |
e7fb589a JW |
382 | .serial(1'b0), |
383 | .buttons(1'b0), | |
06ad3a30 JW |
384 | .master(irq), |
385 | .jaddr(jaddr)); | |
09c1936c JW |
386 | |
387 | Soundcore sound( | |
388 | .core_clk(clk), | |
91c74a3f JW |
389 | .addr(addr[0]), |
390 | .data(data[0]), | |
391 | .rd(rd[0]), | |
392 | .wr(wr[0]), | |
09c1936c JW |
393 | .snd_data_l(soundl), |
394 | .snd_data_r(soundr)); | |
a85b19a7 | 395 | endmodule |