]> Joshua Wise's Git repositories - fpgaboy.git/blame_incremental - System.v
Dual boot ROM support, and the first proof that cellular ram works!
[fpgaboy.git] / System.v
... / ...
CommitLineData
1
2`timescale 1ns / 1ps
3module ROM(
4 input [15:0] address,
5 inout [7:0] data,
6 input clk,
7 input wr, rd);
8
9 reg rdlatch = 0;
10 reg [7:0] odata;
11
12 // synthesis attribute ram_style of rom is block
13 reg [7:0] rom [1023:0];
14 initial $readmemh("rom.hex", rom);
15
16 wire decode = address[15:13] == 0;
17 always @(posedge clk) begin
18 rdlatch <= rd && decode;
19 odata <= rom[address[10:0]];
20 end
21 assign data = rdlatch ? odata : 8'bzzzzzzzz;
22endmodule
23
24module BootstrapROM(
25 input [15:0] address,
26 inout [7:0] data,
27 input clk,
28 input wr, rd);
29
30 reg rdlatch = 0;
31 reg [7:0] addrlatch = 0;
32 reg romno = 0, romnotmp = 0;
33 reg [7:0] brom0 [255:0];
34 reg [7:0] brom1 [255:0];
35
36 initial $readmemh("fpgaboot.hex", brom0);
37 initial $readmemh("gbboot.hex", brom1);
38
39 wire decode = address[15:8] == 0;
40 wire [7:0] odata = (romno == 0) ? brom0[addrlatch] : brom1[addrlatch];
41 always @(posedge clk) begin
42 rdlatch <= rd && decode;
43 addrlatch <= address[7:0];
44 if (wr && decode) romnotmp <= data[0];
45 if (rd && address == 16'h0000) romno <= romnotmp; /* Latch when the program restarts. */
46 end
47 assign data = rdlatch ? odata : 8'bzzzzzzzz;
48endmodule
49
50module MiniRAM(
51 input [15:0] address,
52 inout [7:0] data,
53 input clk,
54 input wr, rd);
55
56 reg [7:0] ram [127:0];
57
58 wire decode = (address >= 16'hFF80) && (address <= 16'hFFFE);
59 reg rdlatch = 0;
60 reg [7:0] odata;
61 assign data = rdlatch ? odata : 8'bzzzzzzzz;
62
63 always @(posedge clk)
64 begin
65 rdlatch <= rd && decode;
66 if (decode) // This has to go this way. The only way XST knows how to do
67 begin // block ram is chip select, write enable, and always
68 if (wr) // reading. "else if rd" does not cut it ...
69 ram[address[6:0]] <= data;
70 odata <= ram[address[6:0]];
71 end
72 end
73endmodule
74
75module CellularRAM(
76 input clk,
77 input [15:0] address,
78 inout [7:0] data,
79 input wr, rd,
80 output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK,
81 output wire [22:0] cr_A,
82 inout [15:0] cr_DQ);
83
84 parameter ADDR_PROGADDRH = 16'hFF60;
85 parameter ADDR_PROGADDRM = 16'hFF61;
86 parameter ADDR_PROGADDRL = 16'hFF62;
87 parameter ADDR_PROGDATA = 16'hFF63;
88
89 reg rdlatch = 0, wrlatch = 0;
90 reg [15:0] addrlatch = 0;
91 reg [7:0] datalatch = 0;
92
93 reg [7:0] progaddrh, progaddrm, progaddrl;
94
95 assign cr_nADV = 0; /* Addresses are always valid! :D */
96 assign cr_nCE = 0; /* The chip is enabled */
97 assign cr_nLB = 0; /* Lower byte is enabled */
98 assign cr_nUB = 0; /* Upper byte is enabled */
99 assign cr_CRE = 0; /* Data writes, not config */
100 assign cr_CLK = 0; /* Clock? I think not! */
101
102 wire decode = (addrlatch[15:14] == 2'b00) /* extrom */ || (addrlatch[15:13] == 3'b101) /* extram */ || (addrlatch == ADDR_PROGDATA);
103
104 assign cr_nOE = decode ? ~rdlatch : 1;
105 assign cr_nWE = decode ? ~wrlatch : 1;
106
107 assign cr_DQ = (~cr_nOE) ? 16'bzzzzzzzzzzzzzzzz : {8'b0, datalatch};
108 assign cr_A = (addrlatch[15:14] == 2'b00) ? /* extrom */ {9'b0,addrlatch[13:0]} :
109 (addrlatch[15:13] == 3'b101) ? {1'b1, 9'b0, addrlatch[12:0]} :
110 (addrlatch == ADDR_PROGDATA) ? {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]} :
111 23'b0;
112
113 reg [7:0] regbuf;
114
115 always @(posedge clk) begin
116 case (address)
117 ADDR_PROGADDRH: if (wr) progaddrh <= data;
118 ADDR_PROGADDRM: if (wr) progaddrm <= data;
119 ADDR_PROGADDRL: if (wr) progaddrl <= data;
120 endcase
121 rdlatch <= rd;
122 wrlatch <= wr;
123 addrlatch <= address;
124 datalatch <= data;
125 end
126
127 assign data = (rdlatch && decode) ?
128 (addrlatch == ADDR_PROGADDRH) ? progaddrh :
129 (addrlatch == ADDR_PROGADDRM) ? progaddrm :
130 (addrlatch == ADDR_PROGADDRL) ? progaddrl :
131 cr_DQ
132 : 8'bzzzzzzzz;
133endmodule
134
135module InternalRAM(
136 input [15:0] address,
137 inout [7:0] data,
138 input clk,
139 input wr, rd);
140
141 // synthesis attribute ram_style of ram is block
142 reg [7:0] ram [8191:0];
143
144 wire decode = (address >= 16'hC000) && (address <= 16'hFDFF); /* This includes echo RAM. */
145 reg [7:0] odata;
146 reg rdlatch = 0;
147 assign data = rdlatch ? odata : 8'bzzzzzzzz;
148
149 always @(posedge clk)
150 begin
151 rdlatch <= rd && decode;
152 if (decode) // This has to go this way. The only way XST knows how to do
153 begin // block ram is chip select, write enable, and always
154 if (wr) // reading. "else if rd" does not cut it ...
155 ram[address[12:0]] <= data;
156 odata <= ram[address[12:0]];
157 end
158 end
159endmodule
160
161module Switches(
162 input [15:0] address,
163 inout [7:0] data,
164 input clk,
165 input wr, rd,
166 input [7:0] switches,
167 output reg [7:0] ledout = 0);
168
169 wire decode = address == 16'hFF51;
170 reg [7:0] odata;
171 reg rdlatch = 0;
172 assign data = rdlatch ? odata : 8'bzzzzzzzz;
173
174 always @(posedge clk)
175 begin
176 rdlatch <= rd && decode;
177 if (decode && rd)
178 odata <= switches;
179 else if (decode && wr)
180 ledout <= data;
181 end
182endmodule
183
184`ifdef isim
185module Dumpable(input [2:0] r, g, input [1:0] b, input hs, vs, vgaclk);
186endmodule
187`endif
188
189module CoreTop(
190`ifdef isim
191 output reg vgaclk = 0,
192 output reg clk = 0,
193`else
194 input xtal,
195 input [7:0] switches,
196 input [3:0] buttons,
197 output wire [7:0] leds,
198 output serio,
199 output wire [3:0] digits,
200 output wire [7:0] seven,
201 output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK,
202 output wire [22:0] cr_A,
203 inout [15:0] cr_DQ,
204`endif
205 output wire hs, vs,
206 output wire [2:0] r, g,
207 output wire [1:0] b,
208 output wire soundl, soundr);
209
210`ifdef isim
211 always #62 clk <= ~clk;
212 always #100 vgaclk <= ~vgaclk;
213
214 Dumpable dump(r,g,b,hs,vs,vgaclk);
215
216 wire [7:0] leds;
217 wire serio;
218 wire [3:0] digits;
219 wire [7:0] seven;
220 wire [7:0] switches = 8'b0;
221 wire [3:0] buttons = 4'b0;
222`else
223 wire xtalb, clk, vgaclk;
224 IBUFG iclkbuf(.O(xtalb), .I(xtal));
225 CPUDCM dcm (.CLKIN_IN(xtalb), .CLKFX_OUT(clk));
226 pixDCM pixdcm (.CLKIN_IN(xtalb), .CLKFX_OUT(vgaclk));
227`endif
228
229 wire [15:0] addr [1:0];
230 wire [7:0] data [1:0];
231 wire wr [1:0], rd [1:0];
232
233 wire irq, tmrirq, lcdcirq, vblankirq;
234 wire [7:0] jaddr;
235 wire [1:0] state;
236
237 GBZ80Core core(
238 .clk(clk),
239 .bus0address(addr[0]),
240 .bus0data(data[0]),
241 .bus0wr(wr[0]),
242 .bus0rd(rd[0]),
243 .bus1address(addr[1]),
244 .bus1data(data[1]),
245 .bus1wr(wr[1]),
246 .bus1rd(rd[1]),
247 .irq(irq),
248 .jaddr(jaddr),
249 .state(state));
250
251 BootstrapROM brom(
252 .address(addr[1]),
253 .data(data[1]),
254 .clk(clk),
255 .wr(wr[1]),
256 .rd(rd[1]));
257
258`ifdef isim
259 ROM rom(
260 .address(addr[0]),
261 .data(data[0]),
262 .clk(clk),
263 .wr(wr[0]),
264 .rd(rd[0]));
265`else
266 CellularRAM cellram(
267 .address(addr[0]),
268 .data(data[0]),
269 .clk(clk),
270 .wr(wr[0]),
271 .rd(rd[0]),
272 .cr_nADV(cr_nADV),
273 .cr_nCE(cr_nCE),
274 .cr_nOE(cr_nOE),
275 .cr_nWE(cr_nWE),
276 .cr_CRE(cr_CRE),
277 .cr_nLB(cr_nLB),
278 .cr_nUB(cr_nUB),
279 .cr_CLK(cr_CLK),
280 .cr_A(cr_A),
281 .cr_DQ(cr_DQ));
282`endif
283
284 wire lcdhs, lcdvs, lcdclk;
285 wire [2:0] lcdr, lcdg;
286 wire [1:0] lcdb;
287
288 LCDC lcdc(
289 .clk(clk),
290 .addr(addr[0]),
291 .data(data[0]),
292 .wr(wr[0]),
293 .rd(rd[0]),
294 .lcdcirq(lcdcirq),
295 .vblankirq(vblankirq),
296 .lcdclk(lcdclk),
297 .lcdhs(lcdhs),
298 .lcdvs(lcdvs),
299 .lcdr(lcdr),
300 .lcdg(lcdg),
301 .lcdb(lcdb));
302
303 Framebuffer fb(
304 .lcdclk(lcdclk),
305 .lcdhs(lcdhs),
306 .lcdvs(lcdvs),
307 .lcdr(lcdr),
308 .lcdg(lcdg),
309 .lcdb(lcdb),
310 .vgaclk(vgaclk),
311 .vgahs(hs),
312 .vgavs(vs),
313 .vgar(r),
314 .vgag(g),
315 .vgab(b));
316
317 AddrMon amon(
318 .clk(clk),
319 .addr(addr[0]),
320 .digit(digits),
321 .out(seven),
322 .freeze(buttons[0]),
323 .periods(
324 (state == 2'b00) ? 4'b0010 :
325 (state == 2'b01) ? 4'b0001 :
326 (state == 2'b10) ? 4'b1000 :
327 4'b0100) );
328
329 Switches sw(
330 .clk(clk),
331 .address(addr[0]),
332 .data(data[0]),
333 .wr(wr[0]),
334 .rd(rd[0]),
335 .ledout(leds),
336 .switches(switches)
337 );
338
339 UART nouart ( /* no u */
340 .clk(clk),
341 .addr(addr[0]),
342 .data(data[0]),
343 .wr(wr[0]),
344 .rd(rd[0]),
345 .serial(serio)
346 );
347
348 InternalRAM ram(
349 .clk(clk),
350 .address(addr[0]),
351 .data(data[0]),
352 .wr(wr[0]),
353 .rd(rd[0])
354 );
355
356 MiniRAM mram(
357 .clk(clk),
358 .address(addr[1]),
359 .data(data[1]),
360 .wr(wr[1]),
361 .rd(rd[1])
362 );
363
364 Timer tmr(
365 .clk(clk),
366 .addr(addr[0]),
367 .data(data[0]),
368 .wr(wr[0]),
369 .rd(rd[0]),
370 .irq(tmrirq)
371 );
372
373 Interrupt intr(
374 .clk(clk),
375 .addr(addr[0]),
376 .data(data[0]),
377 .wr(wr[0]),
378 .rd(rd[0]),
379 .vblank(vblankirq),
380 .lcdc(lcdcirq),
381 .tovf(tmrirq),
382 .serial(1'b0),
383 .buttons(1'b0),
384 .master(irq),
385 .jaddr(jaddr));
386
387 Soundcore sound(
388 .core_clk(clk),
389 .addr(addr[0]),
390 .data(data[0]),
391 .rd(rd[0]),
392 .wr(wr[0]),
393 .snd_data_l(soundl),
394 .snd_data_r(soundr));
395endmodule
This page took 0.029887 seconds and 4 git commands to generate.