-NET "xtal" LOC="B8";
+NET "xtal" LOC="B8" | CLOCK_DEDICATED_ROUTE = FALSE;   # And we get it in the ASS!
 NET "serio"  LOC = "p9";
 NET "serin" LOC = "u6";
 
-NET "leds<0>"  LOC = "j14"  ;
-NET "leds<1>"  LOC = "j15"  ;
-NET "leds<2>"  LOC = "k15"  ;
-NET "leds<3>"  LOC = "k14"  ;
-NET "leds<4>"  LOC = "e17"  ;
-NET "leds<5>"  LOC = "p15"  ;
-NET "leds<6>"  LOC = "f4"  ;
-NET "leds<7>"  LOC = "r4"  ;
+#NET "rxm" LOC="n18" ;
+#NET "rxp" LOC="p18" ;
+NET "txp" LOC="j13" ;
+NET "txm" LOC="m18" ;
+
+NET "leds<0>"  LOC = "j14" ;
+NET "leds<1>"  LOC = "j15" ;
+NET "leds<2>"  LOC = "k15" ;
+NET "leds<3>"  LOC = "k14" ;
+NET "leds<4>"  LOC = "e17" ;
+NET "leds<5>"  LOC = "p15" ;
+NET "leds<6>"  LOC = "f4" ;
+NET "leds<7>"  LOC = "r4" ;
 
 NET "switches<7>" LOC="r17";
 NET "switches<6>" LOC="n17";
 
--- /dev/null
+`define ADDR_ETH_STATUS 16'hFF68
+`define ADDR_ETH 16'hFF69
+
+module Ethernet (
+       input clk,
+       input wr,
+       input rd,
+       input [15:0] addr,
+       inout [7:0] data,
+       input ethclk, rxclk,
+       input rxp, rxm,
+       output txp, txm,
+);
+
+       wire [10:0] outaddr;
+       wire [7:0] outdata;
+       wire busy;
+
+       reg [10:0] len = 0;
+       reg [10:0] addrcnt = 0;
+       reg [1:0] state = 0;
+       reg start = 0;
+       
+       reg [15:0] addrlatch;
+       reg rdlatch;
+
+       assign data = (addrlatch == `ADDR_ETH_STATUS && rdlatch) ? {state,5'b0,busy} : 8'bzzzzzzzz;
+
+       EnetTX tx(
+               .clk20(ethclk),
+               .Ethernet_TDp(txp),
+               .Ethernet_TDm(txm),
+               .busy(busy),
+               .length(len),
+               .rdaddress(outaddr),
+               .start(start),
+               .indata(outdata));
+       
+       EthModRam txram(
+               .wdata(data),
+               .waddr(addrcnt),
+               .raddr(outaddr),
+               .wr(wr && state == 2'b10 && addr == `ADDR_ETH),
+               .clk(clk),
+               .ethclk(ethclk),
+               .rdata(outdata)
+       );      
+       
+       always @ (posedge clk) begin
+               addrlatch <= addr;
+               rdlatch <= rd;
+               if(wr && addr == `ADDR_ETH) begin
+                       case(state)
+                       2'b00: begin
+                               len[10:8] <= data[2:0];
+                               state <= 2'b01;
+                       end
+                       2'b01: begin
+                               len[7:0] <= data[7:0];
+                               state <= 2'b10;
+                       end
+                       2'b10:
+                               if(addrcnt == len) begin
+                                       state <= 2'b11;
+                                       start <= 1'b1;
+                                       addrcnt <= 0;
+                               end else
+                                       addrcnt <= addrcnt + 1;
+                       endcase
+               end else if (state == 2'b11) begin
+                       start <= 1'b0;
+                       state <= 2'b00;
+               end
+       end
+
+endmodule
+
+module EthModRam (
+       input [7:0] wdata,
+       input [10:0] waddr,
+       input [10:0] raddr,
+       input wr,
+       input clk,
+       input ethclk,
+       output reg [7:0] rdata
+);
+
+       reg [7:0] mem [1600:0];
+
+       always @ (posedge clk) begin
+               if(wr)
+                       mem[waddr] <= wdata;
+       end
+
+       always @(posedge ethclk)
+               rdata <= mem[raddr];
+endmodule
+
+module EnetTX(input clk20, output reg Ethernet_TDp, output reg Ethernet_TDm, output wire busy, input start, input [11:0] length, output wire [11:0] rdaddress, input [7:0] indata);
+       reg StartSending; always @(posedge clk20) StartSending<=start;
+       reg [11:0] curlen = 0; always @(posedge clk20) if (start) curlen <= length + 8;
+       
+       reg [11:0] internaladdr;
+       assign rdaddress = internaladdr - 8;
+       wire [7:0] pkt_data = (internaladdr < 7) ? 8'h55 :
+                               (internaladdr == 7) ? 8'hD5 :
+                               indata;
+
+       //////////////////////////////////////////////////////////////////////
+       // and finally the 10BASE-T's magic
+       reg [3:0] ShiftCount;
+       reg SendingPacket;
+       always @(posedge clk20) if(StartSending) SendingPacket<=1; else if(ShiftCount==14 && internaladdr==(curlen + 4)) SendingPacket<=0;
+       always @(posedge clk20) ShiftCount <= SendingPacket ? ShiftCount+1 : 15;
+       wire readram = (ShiftCount==15);
+       always @(posedge clk20) if(ShiftCount==15) internaladdr <= SendingPacket ? internaladdr+1 : 0;
+       reg [7:0] ShiftData; always @(posedge clk20) if(ShiftCount[0]) ShiftData <= readram ? pkt_data : {1'b0, ShiftData[7:1]};
+
+       // generate the CRC32
+       reg [31:0] CRC;
+       reg CRCflush; always @(posedge clk20) if(CRCflush) CRCflush <= SendingPacket; else if(readram) CRCflush <= (internaladdr==curlen);
+       reg CRCinit; always @(posedge clk20) if(readram) CRCinit <= (internaladdr==7);
+       wire CRCinput = CRCflush ? 0 : (ShiftData[0] ^ CRC[31]);
+       always @(posedge clk20) if(ShiftCount[0]) CRC <= CRCinit ? ~0 : ({CRC[30:0],1'b0} ^ ({32{CRCinput}} & 32'h04C11DB7));
+
+       // generate the NLP
+       reg [17:0] LinkPulseCount; always @(posedge clk20) LinkPulseCount <= SendingPacket ? 0 : LinkPulseCount+1;
+       reg LinkPulse; always @(posedge clk20) LinkPulse <= &LinkPulseCount[17:1];
+
+       // TP_IDL, shift-register and manchester encoder
+       reg SendingPacketData; always @(posedge clk20) SendingPacketData <= SendingPacket;
+       assign busy = SendingPacketData;
+       reg [2:0] idlecount; always @(posedge clk20) if(SendingPacketData) idlecount<=0; else if(~&idlecount) idlecount<=idlecount+1;
+       wire dataout = CRCflush ? ~CRC[31] : ShiftData[0];
+       reg qo; always @(posedge clk20) qo <= SendingPacketData ? ~dataout^ShiftCount[0] : 1;
+       reg qoe; always @(posedge clk20) qoe <= SendingPacketData | LinkPulse | (idlecount<6);
+       always @(posedge clk20) Ethernet_TDp <= (qoe ? qo : 1'b0);
+       always @(posedge clk20) Ethernet_TDm <= (qoe ? ~qo : 1'b0);
+endmodule
+
+module EnetRX(
+       input rxclk,
+       input manchester_data_in,
+       output wire wr,
+       output reg [10:0] oaddr,
+       output wire [7:0] odata,
+       output reg pktrdy,
+       output reg [10:0] olength,
+       input pktclear);
+       
+       reg [2:0] in_data;
+       always @(posedge rxclk) in_data <= {in_data[1:0], manchester_data_in};
+       
+       reg [7:0] data;
+       
+       reg [1:0] cnt;
+       always @(posedge rxclk) if(|cnt || (in_data[2] ^ in_data[1])) cnt<=cnt+1;
+       
+       reg new_bit_avail;
+       always @(posedge rxclk) new_bit_avail <= (cnt==3);
+       always @(posedge rxclk) if(cnt==3) data<={in_data[1],data[7:1]};
+
+       /////////////////////////////////////////////////
+       reg end_of_Ethernet_frame;
+       
+       reg [4:0] sync1;
+       always @(posedge rxclk)
+               if(end_of_Ethernet_frame)
+                       sync1<=0; 
+               else if(new_bit_avail) begin
+                       if(!(data==8'h55 || data==8'hAA))       // not preamble?
+                               sync1 <= 0;
+                       else
+                               if(~&sync1)             // if all bits of this "sync1" counter are one, we decide that enough of the preamble
+                                                       // has been received, so stop counting and wait for "sync2" to detect the SFD
+                                       sync1 <= sync1 + 1; // otherwise keep counting
+               end
+       
+       reg [9:0] sync2;
+       always @(posedge rxclk)
+               if(end_of_Ethernet_frame || !pktrdy)
+                       sync2 <= 0;
+               else 
+               if(new_bit_avail) begin
+                       if(|sync2) // if the SFD has already been detected (Ethernet data is coming in)
+                               sync2 <= sync2 + 1; // then count the bits coming in
+                       else if(&sync1 && data==8'hD5) // otherwise, let's wait for the SFD (0xD5)
+                               sync2 <= sync2 + 1;
+               end
+
+       wire new_byte_available = new_bit_avail && (sync2[2:0]==3'h0) && (sync2[9:3]!=0);  
+
+       /////////////////////////////////////////////////
+       // if no clock transistion is detected for some time, that's the end of the Ethernet frame
+
+       reg [2:0] transition_timeout;
+       always @(posedge rxclk) if(in_data[2]^in_data[1]) transition_timeout<=0; else if(~&cnt) transition_timeout<=transition_timeout+1;
+       always @(posedge rxclk) end_of_Ethernet_frame <= &transition_timeout;
+       
+       /////////////////////////////////////////////////
+       always @(posedge rxclk)
+               if (new_byte_available && !pktrdy) begin
+                       odata <= data;
+                       oaddr <= oaddr + 1;
+                       wr <= 1;
+               end else if (end_of_Ethernet_frame) begin
+                       olength <= oaddr;
+                       oaddr <= 0;
+                       wr <= 0;
+                       pktrdy <= 1;
+               end else if (pktclear) begin
+                       pktrdy <= 0;
+                       wr <= 0;
+               else
+                       wr <= 0;
+       
+endmodule
 
--- /dev/null
+////////////////////////////////////////////////////////////////////////////////
+// Copyright (c) 1995-2008 Xilinx, Inc.  All rights reserved.
+////////////////////////////////////////////////////////////////////////////////
+//   ____  ____ 
+//  /   /\/   / 
+// /___/  \  /    Vendor: Xilinx 
+// \   \   \/     Version : 10.1
+//  \   \         Application : xaw2verilog
+//  /   /         Filename : CPUDCM.v
+// /___/   /\     Timestamp : 03/31/2008 23:51:44
+// \   \  /  \ 
+//  \___\/\___\ 
+//
+//Command: xaw2verilog -intstyle /home/joshua/projects/fpga/FPGABoy/CPUDCM.xaw -st CPUDCM.v
+//Design Name: CPUDCM
+//Device: xc3s500e-5fg320
+//
+// Module CPUDCM
+// Generated by Xilinx Architecture Wizard
+// Written for synthesis tool: XST
+// Period Jitter (unit interval) for block DCM_SP_INST = 0.04 UI
+// Period Jitter (Peak-to-Peak) for block DCM_SP_INST = 4.90 ns
+`timescale 1ns / 1ps
+
+module ethDCM(CLKIN_IN, 
+              CLKFX_OUT, 
+              CLKIN_IBUFG_OUT, 
+              LOCKED_OUT);
+
+    input CLKIN_IN;
+   output CLKFX_OUT;
+   output CLKIN_IBUFG_OUT;
+   output LOCKED_OUT;
+   
+   wire CLKFX_BUF;
+   wire CLKIN_IBUFG;
+   wire GND_BIT;
+   
+   assign GND_BIT = 0;
+   assign CLKIN_IBUFG_OUT = CLKIN_IBUFG;
+   BUFG CLKFX_BUFG_INST (.I(CLKFX_BUF), 
+                         .O(CLKFX_OUT));
+   DCM_SP DCM_SP_INST (.CLKFB(GND_BIT), 
+                       .CLKIN(CLKIN_IN), 
+                       .DSSEN(GND_BIT), 
+                       .PSCLK(GND_BIT), 
+                       .PSEN(GND_BIT), 
+                       .PSINCDEC(GND_BIT), 
+                       .RST(GND_BIT), 
+                       .CLKDV(), 
+                       .CLKFX(CLKFX_BUF), 
+                       .CLKFX180(), 
+                       .CLK0(), 
+                       .CLK2X(), 
+                       .CLK2X180(), 
+                       .CLK90(), 
+                       .CLK180(), 
+                       .CLK270(), 
+                       .LOCKED(LOCKED_OUT), 
+                       .PSDONE(), 
+                       .STATUS());
+   defparam DCM_SP_INST.CLK_FEEDBACK = "NONE";
+   defparam DCM_SP_INST.CLKDV_DIVIDE = 2.0;
+   defparam DCM_SP_INST.CLKFX_DIVIDE = 5;
+   defparam DCM_SP_INST.CLKFX_MULTIPLY = 2;
+   defparam DCM_SP_INST.CLKIN_DIVIDE_BY_2 = "FALSE";
+   defparam DCM_SP_INST.CLKIN_PERIOD = 20.000;
+   defparam DCM_SP_INST.CLKOUT_PHASE_SHIFT = "NONE";
+   defparam DCM_SP_INST.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS";
+   defparam DCM_SP_INST.DFS_FREQUENCY_MODE = "LOW";
+   defparam DCM_SP_INST.DLL_FREQUENCY_MODE = "LOW";
+   defparam DCM_SP_INST.DUTY_CYCLE_CORRECTION = "TRUE";
+   defparam DCM_SP_INST.FACTORY_JF = 16'hC080;
+   defparam DCM_SP_INST.PHASE_SHIFT = 0;
+   defparam DCM_SP_INST.STARTUP_WAIT = "FALSE";
+endmodule