3 * This is the IPv4 packet segmentation and reassembly implementation.
8 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met:
14 * 1. Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
33 * This file is part of the lwIP TCP/IP stack.
35 * Author: Jani Monoses <jani@iv.ro>
37 * original reassembly code by Adam Dunkels <adam@sics.se>
42 #include "lwip/ip_frag.h"
44 #include "lwip/inet.h"
45 #include "lwip/inet_chksum.h"
46 #include "lwip/netif.h"
47 #include "lwip/snmp.h"
48 #include "lwip/stats.h"
49 #include "lwip/icmp.h"
55 * The IP reassembly code currently has the following limitations:
56 * - IP header options are not supported
57 * - fragments must not overlap (e.g. due to different routes),
58 * currently, overlapping or duplicate fragments are thrown away
59 * if IP_REASS_CHECK_OVERLAP=1 (the default)!
61 * @todo: work with IP header options
64 /** Setting this to 0, you can turn off checking the fragments for overlapping
65 * regions. The code gets a little smaller. Only use this if you know that
66 * overlapping won't occur on your network! */
67 #ifndef IP_REASS_CHECK_OVERLAP
68 #define IP_REASS_CHECK_OVERLAP 1
69 #endif /* IP_REASS_CHECK_OVERLAP */
71 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
72 * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
73 * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
74 * is set to 1, so one datagram can be reassembled at a time, only. */
75 #ifndef IP_REASS_FREE_OLDEST
76 #define IP_REASS_FREE_OLDEST 1
77 #endif /* IP_REASS_FREE_OLDEST */
79 #define IP_REASS_FLAG_LASTFRAG 0x01
81 /** This is a helper struct which holds the starting
82 * offset and the ending offset of this fragment to
83 * easily chain the fragments.
85 struct ip_reass_helper {
86 struct pbuf *next_pbuf;
91 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB) \
92 (ip_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
93 ip_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
94 IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
96 /* global variables */
97 static struct ip_reassdata *reassdatagrams;
98 static u16_t ip_reass_pbufcount;
100 /* function prototypes */
101 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
102 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
105 * Reassembly timer base function
106 * for both NO_SYS == 0 and 1 (!).
108 * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
113 struct ip_reassdata *r, *prev = NULL;
117 /* Decrement the timer. Once it reaches 0,
118 * clean up the incomplete fragment assembly */
121 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)r->timer));
125 /* reassembly timed out */
126 struct ip_reassdata *tmp;
127 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
129 /* get the next pointer before freeing */
131 /* free the helper struct and all enqueued pbufs */
132 ip_reass_free_complete_datagram(tmp, prev);
138 * Free a datagram (struct ip_reassdata) and all its pbufs.
139 * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
140 * SNMP counters and sends an ICMP time exceeded packet.
142 * @param ipr datagram to free
143 * @param prev the previous datagram in the linked list
144 * @return the number of pbufs freed
147 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
151 struct ip_reass_helper *iprh;
153 LWIP_ASSERT("prev != ipr", prev != ipr);
155 LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
158 snmp_inc_ipreasmfails();
160 iprh = (struct ip_reass_helper *)ipr->p->payload;
161 if (iprh->start == 0) {
162 /* The first fragment was received, send ICMP time exceeded. */
163 /* First, de-queue the first pbuf from r->p. */
165 ipr->p = iprh->next_pbuf;
166 /* Then, copy the original header into it. */
167 SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
168 icmp_time_exceeded(p, ICMP_TE_FRAG);
169 pbufs_freed += pbuf_clen(p);
172 #endif /* LWIP_ICMP */
174 /* First, free all received pbufs. The individual pbufs need to be released
175 separately as they have not yet been chained */
179 iprh = (struct ip_reass_helper *)p->payload;
181 /* get the next pointer before freeing */
183 pbufs_freed += pbuf_clen(pcur);
186 /* Then, unchain the struct ip_reassdata from the list and free it. */
187 ip_reass_dequeue_datagram(ipr, prev);
188 LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= pbufs_freed);
189 ip_reass_pbufcount -= pbufs_freed;
194 #if IP_REASS_FREE_OLDEST
196 * Free the oldest datagram to make room for enqueueing new fragments.
197 * The datagram 'fraghdr' belongs to is not freed!
199 * @param fraghdr IP header of the current fragment
200 * @param pbufs_needed number of pbufs needed to enqueue
201 * (used for freeing other datagrams if not enough space)
202 * @return the number of pbufs freed
205 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
207 /* @todo Can't we simply remove the last datagram in the
208 * linked list behind reassdatagrams?
210 struct ip_reassdata *r, *oldest, *prev;
211 int pbufs_freed = 0, pbufs_freed_current;
214 /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
215 * but don't free the datagram that 'fraghdr' belongs to! */
222 if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
223 /* Not the same datagram as fraghdr */
225 if (oldest == NULL) {
227 } else if (r->timer <= oldest->timer) {
228 /* older than the previous oldest */
232 if (r->next != NULL) {
237 if (oldest != NULL) {
238 pbufs_freed_current = ip_reass_free_complete_datagram(oldest, prev);
239 pbufs_freed += pbufs_freed_current;
241 } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
244 #endif /* IP_REASS_FREE_OLDEST */
247 * Enqueues a new fragment into the fragment queue
248 * @param fraghdr points to the new fragments IP hdr
249 * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
250 * @return A pointer to the queue location into which the fragment was enqueued
252 static struct ip_reassdata*
253 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
255 struct ip_reassdata* ipr;
256 /* No matching previous fragment found, allocate a new reassdata struct */
257 ipr = memp_malloc(MEMP_REASSDATA);
259 #if IP_REASS_FREE_OLDEST
260 if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
261 ipr = memp_malloc(MEMP_REASSDATA);
264 #endif /* IP_REASS_FREE_OLDEST */
266 IPFRAG_STATS_INC(ip_frag.memerr);
267 LWIP_DEBUGF(IP_REASS_DEBUG,("Failed to alloc reassdata struct\n"));
271 memset(ipr, 0, sizeof(struct ip_reassdata));
272 ipr->timer = IP_REASS_MAXAGE;
274 /* enqueue the new structure to the front of the list */
275 ipr->next = reassdatagrams;
276 reassdatagrams = ipr;
277 /* copy the ip header for later tests and input */
278 /* @todo: no ip options supported? */
279 SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
284 * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
285 * @param ipr points to the queue entry to dequeue
288 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
291 /* dequeue the reass struct */
292 if (reassdatagrams == ipr) {
293 /* it was the first in the list */
294 reassdatagrams = ipr->next;
296 /* it wasn't the first, so it must have a valid 'prev' */
297 LWIP_ASSERT("sanity check linked list", prev != NULL);
298 prev->next = ipr->next;
301 /* now we can free the ip_reass struct */
302 memp_free(MEMP_REASSDATA, ipr);
306 * Chain a new pbuf into the pbuf list that composes the datagram. The pbuf list
307 * will grow over time as new pbufs are rx.
308 * Also checks that the datagram passes basic continuity checks (if the last
309 * fragment was received at least once).
310 * @param root_p points to the 'root' pbuf for the current datagram being assembled.
311 * @param new_p points to the pbuf for the current fragment
312 * @return 0 if invalid, >0 otherwise
315 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p)
317 struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
320 struct ip_hdr *fraghdr;
323 /* Extract length and fragment offset from current fragment */
324 fraghdr = (struct ip_hdr*)new_p->payload;
325 len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
326 offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
328 /* overwrite the fragment's ip header from the pbuf with our helper struct,
329 * and setup the embedded helper structure. */
330 /* make sure the struct ip_reass_helper fits into the IP header */
331 LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
332 sizeof(struct ip_reass_helper) <= IP_HLEN);
333 iprh = (struct ip_reass_helper*)new_p->payload;
334 iprh->next_pbuf = NULL;
335 iprh->start = offset;
336 iprh->end = offset + len;
338 /* Iterate through until we either get to the end of the list (append),
339 * or we find on with a larger offset (insert). */
340 for (q = ipr->p; q != NULL;) {
341 iprh_tmp = (struct ip_reass_helper*)q->payload;
342 if (iprh->start < iprh_tmp->start) {
343 /* the new pbuf should be inserted before this */
345 if (iprh_prev != NULL) {
346 /* not the fragment with the lowest offset */
347 #if IP_REASS_CHECK_OVERLAP
348 if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
349 /* fragment overlaps with previous or following, throw away */
352 #endif /* IP_REASS_CHECK_OVERLAP */
353 iprh_prev->next_pbuf = new_p;
355 /* fragment with the lowest offset */
359 } else if(iprh->start == iprh_tmp->start) {
360 /* received the same datagram twice: no need to keep the datagram */
362 #if IP_REASS_CHECK_OVERLAP
363 } else if(iprh->start < iprh_tmp->end) {
364 /* overlap: no need to keep the new datagram */
366 #endif /* IP_REASS_CHECK_OVERLAP */
368 /* Check if the fragments received so far have no wholes. */
369 if (iprh_prev != NULL) {
370 if (iprh_prev->end != iprh_tmp->start) {
371 /* There is a fragment missing between the current
372 * and the previous fragment */
377 q = iprh_tmp->next_pbuf;
378 iprh_prev = iprh_tmp;
381 /* If q is NULL, then we made it to the end of the list. Determine what to do now */
383 if (iprh_prev != NULL) {
384 /* this is (for now), the fragment with the highest offset:
385 * chain it to the last fragment */
386 #if IP_REASS_CHECK_OVERLAP
387 LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
388 #endif /* IP_REASS_CHECK_OVERLAP */
389 iprh_prev->next_pbuf = new_p;
390 if (iprh_prev->end != iprh->start) {
394 #if IP_REASS_CHECK_OVERLAP
395 LWIP_ASSERT("no previous fragment, this must be the first fragment!",
397 #endif /* IP_REASS_CHECK_OVERLAP */
398 /* this is the first fragment we ever received for this ip datagram */
403 /* At this point, the validation part begins: */
404 /* If we already received the last fragment */
405 if ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0) {
406 /* and had no wholes so far */
408 /* then check if the rest of the fragments is here */
409 /* Check if the queue starts with the first datagram */
410 if (((struct ip_reass_helper*)ipr->p->payload)->start != 0) {
413 /* and check that there are no wholes after this datagram */
417 iprh = (struct ip_reass_helper*)q->payload;
418 if (iprh_prev->end != iprh->start) {
425 /* if still valid, all fragments are received
426 * (because to the MF==0 already arrived */
428 LWIP_ASSERT("sanity check", ipr->p != NULL);
429 LWIP_ASSERT("sanity check",
430 ((struct ip_reass_helper*)ipr->p->payload) != iprh);
431 LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
432 iprh->next_pbuf == NULL);
433 LWIP_ASSERT("validate_datagram:datagram end!=datagram len",
434 iprh->end == ipr->datagram_len);
438 /* If valid is 0 here, there are some fragments missing in the middle
439 * (since MF == 0 has already arrived). Such datagrams simply time out if
440 * no more fragments are received... */
443 /* If we come here, not all fragments were received, yet! */
444 return 0; /* not yet valid! */
445 #if IP_REASS_CHECK_OVERLAP
447 ip_reass_pbufcount -= pbuf_clen(new_p);
450 #endif /* IP_REASS_CHECK_OVERLAP */
454 * Reassembles incoming IP fragments into an IP datagram.
456 * @param p points to a pbuf chain of the fragment
457 * @return NULL if reassembly is incomplete, ? otherwise
460 ip_reass(struct pbuf *p)
463 struct ip_hdr *fraghdr;
464 struct ip_reassdata *ipr;
465 struct ip_reass_helper *iprh;
468 struct ip_reassdata *ipr_prev = NULL;
470 IPFRAG_STATS_INC(ip_frag.recv);
471 snmp_inc_ipreasmreqds();
473 fraghdr = (struct ip_hdr*)p->payload;
475 if ((IPH_HL(fraghdr) * 4) != IP_HLEN) {
476 LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: IP options currently not supported!\n"));
477 IPFRAG_STATS_INC(ip_frag.err);
481 offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
482 len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
484 /* Check if we are allowed to enqueue more datagrams. */
486 if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
487 #if IP_REASS_FREE_OLDEST
488 if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
489 ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
490 #endif /* IP_REASS_FREE_OLDEST */
492 /* No datagram could be freed and still too many pbufs enqueued */
493 LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
494 ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
495 IPFRAG_STATS_INC(ip_frag.memerr);
496 /* @todo: send ICMP time exceeded here? */
502 /* Look for the datagram the fragment belongs to in the current datagram queue,
503 * remembering the previous in the queue for later dequeueing. */
504 for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
505 /* Check if the incoming fragment matches the one currently present
506 in the reassembly buffer. If so, we proceed with copying the
507 fragment into the buffer. */
508 if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
509 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: matching previous fragment ID=%"X16_F"\n",
510 ntohs(IPH_ID(fraghdr))));
511 IPFRAG_STATS_INC(ip_frag.cachehit);
518 /* Enqueue a new datagram into the datagram queue */
519 ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
520 /* Bail if unable to enqueue */
525 if (((ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
526 ((ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
527 /* ipr->iphdr is not the header from the first fragment, but fraghdr is
528 * -> copy fraghdr into ipr->iphdr since we want to have the header
529 * of the first fragment (for ICMP time exceeded and later, for copying
530 * all options, if supported)*/
531 SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
534 /* Track the current number of pbufs current 'in-flight', in order to limit
535 the number of fragments that may be enqueued at any one time */
536 ip_reass_pbufcount += clen;
538 /* At this point, we have either created a new entry or pointing
539 * to an existing one */
541 /* check for 'no more fragments', and update queue entry*/
542 if ((ntohs(IPH_OFFSET(fraghdr)) & IP_MF) == 0) {
543 ipr->flags |= IP_REASS_FLAG_LASTFRAG;
544 ipr->datagram_len = offset + len;
545 LWIP_DEBUGF(IP_REASS_DEBUG,
546 ("ip_reass: last fragment seen, total len %"S16_F"\n",
549 /* find the right place to insert this pbuf */
550 /* @todo: trim pbufs if fragments are overlapping */
551 if (ip_reass_chain_frag_into_datagram_and_validate(ipr, p)) {
552 /* the totally last fragment (flag more fragments = 0) was received at least
553 * once AND all fragments are received */
554 ipr->datagram_len += IP_HLEN;
556 /* save the second pbuf before copying the header over the pointer */
557 r = ((struct ip_reass_helper*)ipr->p->payload)->next_pbuf;
559 /* copy the original ip header back to the first pbuf */
560 fraghdr = (struct ip_hdr*)(ipr->p->payload);
561 SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
562 IPH_LEN_SET(fraghdr, htons(ipr->datagram_len));
563 IPH_OFFSET_SET(fraghdr, 0);
564 IPH_CHKSUM_SET(fraghdr, 0);
565 /* @todo: do we need to set calculate the correct checksum? */
566 IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
570 /* chain together the pbufs contained within the reass_data list. */
572 iprh = (struct ip_reass_helper*)r->payload;
574 /* hide the ip header for every succeding fragment */
575 pbuf_header(r, -IP_HLEN);
579 /* release the sources allocate for the fragment queue entry */
580 ip_reass_dequeue_datagram(ipr, ipr_prev);
582 /* and adjust the number of pbufs currently queued for reassembly. */
583 ip_reass_pbufcount -= pbuf_clen(p);
585 /* Return the pbuf chain */
588 /* the datagram is not (yet?) reassembled completely */
589 LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
593 LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: nullreturn\n"));
594 IPFRAG_STATS_INC(ip_frag.drop);
598 #endif /* IP_REASSEMBLY */
601 #if IP_FRAG_USES_STATIC_BUF
602 static u8_t buf[LWIP_MEM_ALIGN_SIZE(IP_FRAG_MAX_MTU)];
603 #endif /* IP_FRAG_USES_STATIC_BUF */
606 * Fragment an IP datagram if too large for the netif.
608 * Chop the datagram in MTU sized chunks and send them in order
609 * by using a fixed size static memory buffer (PBUF_REF) or
610 * point PBUF_REFs into p (depending on IP_FRAG_USES_STATIC_BUF).
612 * @param p ip packet to send
613 * @param netif the netif on which to send
614 * @param dest destination ip address to which to send
616 * @return ERR_OK if sent successfully, err_t otherwise
619 ip_frag(struct pbuf *p, struct netif *netif, struct ip_addr *dest)
622 #if IP_FRAG_USES_STATIC_BUF
625 struct pbuf *newpbuf;
626 struct ip_hdr *original_iphdr;
628 struct ip_hdr *iphdr;
631 u16_t mtu = netif->mtu;
634 u16_t poff = IP_HLEN;
636 #if !IP_FRAG_USES_STATIC_BUF
637 u16_t newpbuflen = 0;
641 /* Get a RAM based MTU sized pbuf */
642 #if IP_FRAG_USES_STATIC_BUF
643 /* When using a static buffer, we use a PBUF_REF, which we will
644 * use to reference the packet (without link header).
645 * Layer and length is irrelevant.
647 rambuf = pbuf_alloc(PBUF_LINK, 0, PBUF_REF);
648 if (rambuf == NULL) {
649 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc(PBUF_LINK, 0, PBUF_REF) failed\n"));
652 rambuf->tot_len = rambuf->len = mtu;
653 rambuf->payload = LWIP_MEM_ALIGN((void *)buf);
655 /* Copy the IP header in it */
656 iphdr = rambuf->payload;
657 SMEMCPY(iphdr, p->payload, IP_HLEN);
658 #else /* IP_FRAG_USES_STATIC_BUF */
659 original_iphdr = p->payload;
660 iphdr = original_iphdr;
661 #endif /* IP_FRAG_USES_STATIC_BUF */
663 /* Save original offset */
664 tmp = ntohs(IPH_OFFSET(iphdr));
665 ofo = tmp & IP_OFFMASK;
668 left = p->tot_len - IP_HLEN;
670 nfb = (mtu - IP_HLEN) / 8;
673 last = (left <= mtu - IP_HLEN);
675 /* Set new offset and MF flag */
676 tmp = omf | (IP_OFFMASK & (ofo));
680 /* Fill this fragment */
681 cop = last ? left : nfb * 8;
683 #if IP_FRAG_USES_STATIC_BUF
684 poff += pbuf_copy_partial(p, (u8_t*)iphdr + IP_HLEN, cop, poff);
685 #else /* IP_FRAG_USES_STATIC_BUF */
686 /* When not using a static buffer, create a chain of pbufs.
687 * The first will be a PBUF_RAM holding the link and IP header.
688 * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
689 * but limited to the size of an mtu.
691 rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
692 if (rambuf == NULL) {
695 LWIP_ASSERT("this needs a pbuf in one piece!",
696 (p->len >= (IP_HLEN)));
697 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
698 iphdr = rambuf->payload;
700 /* Can just adjust p directly for needed offset. */
701 p->payload = (u8_t *)p->payload + poff;
705 while (left_to_copy) {
706 newpbuflen = (left_to_copy < p->len) ? left_to_copy : p->len;
707 /* Is this pbuf already empty? */
712 newpbuf = pbuf_alloc(PBUF_RAW, 0, PBUF_REF);
713 if (newpbuf == NULL) {
717 /* Mirror this pbuf, although we might not need all of it. */
718 newpbuf->payload = p->payload;
719 newpbuf->len = newpbuf->tot_len = newpbuflen;
720 /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
721 * so that it is removed when pbuf_dechain is later called on rambuf.
723 pbuf_cat(rambuf, newpbuf);
724 left_to_copy -= newpbuflen;
729 #endif /* IP_FRAG_USES_STATIC_BUF */
732 IPH_OFFSET_SET(iphdr, htons(tmp));
733 IPH_LEN_SET(iphdr, htons(cop + IP_HLEN));
734 IPH_CHKSUM_SET(iphdr, 0);
735 IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
737 #if IP_FRAG_USES_STATIC_BUF
739 pbuf_realloc(rambuf, left + IP_HLEN);
741 /* This part is ugly: we alloc a RAM based pbuf for
742 * the link level header for each chunk and then
743 * free it.A PBUF_ROM style pbuf for which pbuf_header
744 * worked would make things simpler.
746 header = pbuf_alloc(PBUF_LINK, 0, PBUF_RAM);
747 if (header != NULL) {
748 pbuf_chain(header, rambuf);
749 netif->output(netif, header, dest);
750 IPFRAG_STATS_INC(ip_frag.xmit);
751 snmp_inc_ipfragcreates();
754 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc() for header failed\n"));
758 #else /* IP_FRAG_USES_STATIC_BUF */
759 /* No need for separate header pbuf - we allowed room for it in rambuf
762 netif->output(netif, rambuf, dest);
763 IPFRAG_STATS_INC(ip_frag.xmit);
765 /* Unfortunately we can't reuse rambuf - the hardware may still be
766 * using the buffer. Instead we free it (and the ensuing chain) and
767 * recreate it next time round the loop. If we're lucky the hardware
768 * will have already sent the packet, the free will really free, and
769 * there will be zero memory penalty.
773 #endif /* IP_FRAG_USES_STATIC_BUF */
777 #if IP_FRAG_USES_STATIC_BUF
779 #endif /* IP_FRAG_USES_STATIC_BUF */
780 snmp_inc_ipfragoks();