3 input Nrst, /* XXX not used yet */
18 output reg outstall = 0,
19 output reg outbubble = 1,
20 output reg [31:0] outcpsr = 0,
21 output reg [31:0] outspsr = 0,
22 output reg write_reg = 1'bx,
23 output reg [3:0] write_num = 4'bxxxx,
24 output reg [31:0] write_data = 32'hxxxxxxxx
28 reg [31:0] mult_acc0, mult_in0, mult_in1;
30 wire [31:0] mult_result;
32 reg [31:0] alu_in0, alu_in1;
35 wire [31:0] alu_result, alu_outcpsr;
39 reg [31:0] next_outcpsr, next_outspsr;
41 reg [3:0] next_write_num;
42 reg [31:0] next_write_data;
44 Multiplier multiplier(
45 .clk(clk), .Nrst(Nrst),
46 .start(mult_start), .acc0(mult_acc0), .in0(mult_in0),
47 .in1(mult_in1), .done(mult_done), .result(mult_result));
50 .clk(clk), .Nrst(Nrst),
51 .in0(alu_in0), .in1(alu_in1), .cpsr(cpsr), .op(alu_op),
52 .setflags(alu_setflags), .shifter_carry(carry),
53 .result(alu_result), .cpsr_out(alu_outcpsr), .setres(alu_setres));
59 outbubble <= next_outbubble;
60 outcpsr <= next_outcpsr;
61 outspsr <= next_outspsr;
62 write_reg <= next_write_reg;
63 write_num <= next_write_num;
64 write_data <= next_write_data;
70 prevstall <= outstall;
75 next_outbubble = inbubble;
79 next_write_num = 4'hx;
80 next_write_data = 32'hxxxxxxxx;
83 mult_acc0 = 32'hxxxxxxxx;
84 mult_in0 = 32'hxxxxxxxx;
85 mult_in1 = 32'hxxxxxxxx;
87 alu_in0 = 32'hxxxxxxxx;
88 alu_in1 = 32'hxxxxxxxx;
89 alu_op = 4'hx; /* hax! */
93 `DECODE_ALU_MULT: /* Multiply -- must come before ALU, because it pattern matches a specific case of ALU */
95 if (!prevstall && !inbubble)
98 mult_acc0 = insn[21] /* A */ ? op0 /* Rn */ : 32'h0;
99 mult_in0 = op1 /* Rm */;
100 mult_in1 = op2 /* Rs */;
101 $display("New MUL instruction");
103 outstall = stall | ((!prevstall | !mult_done) && !inbubble);
104 next_outbubble = inbubble | !mult_done | !prevstall;
105 next_outcpsr = insn[20] /* S */ ? {mult_result[31] /* N */, mult_result == 0 /* Z */, 1'b0 /* C */, cpsr[28] /* V */, cpsr[27:0]} : cpsr;
107 next_write_num = insn[19:16] /* Rd -- why the fuck isn't this the same place as ALU */;
108 next_write_data = mult_result;
110 // `DECODE_ALU_MUL_LONG, /* Multiply long */
111 `DECODE_ALU_MRS: /* MRS (Transfer PSR to register) */
114 next_write_num = insn[15:12];
115 if (insn[22] /* Ps */)
116 next_write_data = spsr;
118 next_write_data = cpsr;
120 `DECODE_ALU_MSR, /* MSR (Transfer register to PSR) */
121 `DECODE_ALU_MSR_FLAGS: /* MSR (Transfer register or immediate to PSR, flag bits only) */
122 if ((cpsr[4:0] == `MODE_USR) || (insn[16] /* that random bit */ == 1'b0)) /* flags only */
124 if (insn[22] /* Ps */)
125 next_outspsr = {op0[31:29], spsr[28:0]};
127 next_outcpsr = {op0[31:29], cpsr[28:0]};
129 if (insn[22] /* Ps */)
134 `DECODE_ALU_SWP, /* Atomic swap */
135 `DECODE_ALU_BX, /* Branch */
136 `DECODE_ALU_HDATA_REG, /* Halfword transfer - register offset */
137 `DECODE_ALU_HDATA_IMM: /* Halfword transfer - immediate offset */
139 `DECODE_ALU: /* ALU */
143 alu_op = insn[24:21];
144 alu_setflags = insn[20] /* S */;
146 if (alu_setres) begin
148 next_write_num = insn[15:12] /* Rd */;
149 next_write_data = alu_result;
152 next_outcpsr = ((insn[15:12] == 4'b1111) && insn[20]) ? spsr : alu_outcpsr;
154 `DECODE_LDRSTR_UNDEFINED, /* Undefined. I hate ARM */
155 `DECODE_LDRSTR, /* Single data transfer */
156 `DECODE_LDMSTM, /* Block data transfer */
157 `DECODE_BRANCH, /* Branch */
158 `DECODE_LDCSTC, /* Coprocessor data transfer */
159 `DECODE_CDP, /* Coprocessor data op */
160 `DECODE_MRCMCR, /* Coprocessor register transfer */
161 `DECODE_SWI: /* SWI */
163 default: /* X everything else out */
171 input Nrst, /* XXX not used yet */
179 output reg [31:0] result);
182 reg [31:0] multiplicand;
185 always @(posedge clk)
193 bitfield <= {2'b00, bitfield[31:2]};
194 multiplicand <= {multiplicand[29:0], 2'b00};
196 (bitfield[0] ? multiplicand : 0) +
197 (bitfield[1] ? {multiplicand[30:0], 1'b0} : 0);
198 if (bitfield == 0) begin
208 input Nrst, /* XXX not used yet */
217 output reg [31:0] result,
218 output reg [31:0] cpsr_out,
222 wire flag_n, flag_z, flag_c, flag_v, setres;
223 wire [32:0] sum, diff, rdiff;
224 wire sum_v, diff_v, rdiff_v;
226 assign sum = {1'b0, in0} + {1'b0, in1};
227 assign diff = {1'b0, in0} - {1'b0, in1};
228 assign rdiff = {1'b0, in1} + {1'b0, in0};
229 assign sum_v = (in0[31] ^~ in1[31]) & (sum[31] ^ in0[31]);
230 assign diff_v = (in0[31] ^ in1[31]) & (diff[31] ^ in0[31]);
231 assign rdiff_v = (in0[31] ^ in1[31]) & (rdiff[31] ^ in1[31]);
236 flag_c = cpsr[`CPSR_C];
237 flag_v = cpsr[`CPSR_V];
241 flag_c = shifter_carry;
246 flag_c = shifter_carry;
250 {flag_c, result} = diff;
255 {flag_c, result} = rdiff;
260 {flag_c, result} = sum;
265 {flag_c, result} = sum + {32'b0, cpsr[`CPSR_C]};
266 flag_v = sum_v | (~sum[31] & result[31]);
270 {flag_c, result} = diff - {32'b0, (~cpsr[`CPSR_C])};
271 flag_v = diff_v | (diff[31] & ~result[31]);
275 {flag_c, result} = rdiff - {32'b0, (~cpsr[`CPSR_C])};
276 flag_v = rdiff_v | (rdiff[31] & ~result[31]);
281 flag_c = shifter_carry;
286 flag_c = shifter_carry;
290 {flag_c, result} = diff;
295 {flag_c, result} = sum;
301 flag_c = shifter_carry;
306 flag_c = shifter_carry;
310 result = in0 & (~in1);
311 flag_c = shifter_carry;
316 flag_c = shifter_carry;
321 flag_z = (result == 0);
324 cpsr_out = setflags ? {flag_n, flag_z, flag_c, flag_v, cpsr[27:0]} : cpsr;