]>
Commit | Line | Data |
---|---|---|
1 | /** | |
2 | * @file | |
3 | * Transmission Control Protocol, incoming traffic | |
4 | * | |
5 | * The input processing functions of the TCP layer. | |
6 | * | |
7 | * These functions are generally called in the order (ip_input() ->) | |
8 | * tcp_input() -> * tcp_process() -> tcp_receive() (-> application). | |
9 | * | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Copyright (c) 2001-2004 Swedish Institute of Computer Science. | |
14 | * All rights reserved. | |
15 | * | |
16 | * Redistribution and use in source and binary forms, with or without modification, | |
17 | * are permitted provided that the following conditions are met: | |
18 | * | |
19 | * 1. Redistributions of source code must retain the above copyright notice, | |
20 | * this list of conditions and the following disclaimer. | |
21 | * 2. Redistributions in binary form must reproduce the above copyright notice, | |
22 | * this list of conditions and the following disclaimer in the documentation | |
23 | * and/or other materials provided with the distribution. | |
24 | * 3. The name of the author may not be used to endorse or promote products | |
25 | * derived from this software without specific prior written permission. | |
26 | * | |
27 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED | |
28 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | |
29 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT | |
30 | * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
31 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | |
32 | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
33 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
34 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING | |
35 | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY | |
36 | * OF SUCH DAMAGE. | |
37 | * | |
38 | * This file is part of the lwIP TCP/IP stack. | |
39 | * | |
40 | * Author: Adam Dunkels <adam@sics.se> | |
41 | * | |
42 | */ | |
43 | ||
44 | #include "lwip/opt.h" | |
45 | ||
46 | #if LWIP_TCP /* don't build if not configured for use in lwipopts.h */ | |
47 | ||
48 | #include "lwip/tcp.h" | |
49 | #include "lwip/def.h" | |
50 | #include "lwip/ip_addr.h" | |
51 | #include "lwip/netif.h" | |
52 | #include "lwip/mem.h" | |
53 | #include "lwip/memp.h" | |
54 | #include "lwip/inet.h" | |
55 | #include "lwip/inet_chksum.h" | |
56 | #include "lwip/stats.h" | |
57 | #include "lwip/snmp.h" | |
58 | #include "arch/perf.h" | |
59 | ||
60 | /* These variables are global to all functions involved in the input | |
61 | processing of TCP segments. They are set by the tcp_input() | |
62 | function. */ | |
63 | static struct tcp_seg inseg; | |
64 | static struct tcp_hdr *tcphdr; | |
65 | static struct ip_hdr *iphdr; | |
66 | static u32_t seqno, ackno; | |
67 | static u8_t flags; | |
68 | static u16_t tcplen; | |
69 | ||
70 | static u8_t recv_flags; | |
71 | static struct pbuf *recv_data; | |
72 | ||
73 | struct tcp_pcb *tcp_input_pcb; | |
74 | ||
75 | /* Forward declarations. */ | |
76 | static err_t tcp_process(struct tcp_pcb *pcb); | |
77 | static u8_t tcp_receive(struct tcp_pcb *pcb); | |
78 | static void tcp_parseopt(struct tcp_pcb *pcb); | |
79 | ||
80 | static err_t tcp_listen_input(struct tcp_pcb_listen *pcb); | |
81 | static err_t tcp_timewait_input(struct tcp_pcb *pcb); | |
82 | ||
83 | /** | |
84 | * The initial input processing of TCP. It verifies the TCP header, demultiplexes | |
85 | * the segment between the PCBs and passes it on to tcp_process(), which implements | |
86 | * the TCP finite state machine. This function is called by the IP layer (in | |
87 | * ip_input()). | |
88 | * | |
89 | * @param p received TCP segment to process (p->payload pointing to the IP header) | |
90 | * @param inp network interface on which this segment was received | |
91 | */ | |
92 | void | |
93 | tcp_input(struct pbuf *p, struct netif *inp) | |
94 | { | |
95 | struct tcp_pcb *pcb, *prev; | |
96 | struct tcp_pcb_listen *lpcb; | |
97 | u8_t hdrlen; | |
98 | err_t err; | |
99 | ||
100 | PERF_START; | |
101 | ||
102 | TCP_STATS_INC(tcp.recv); | |
103 | snmp_inc_tcpinsegs(); | |
104 | ||
105 | iphdr = p->payload; | |
106 | tcphdr = (struct tcp_hdr *)((u8_t *)p->payload + IPH_HL(iphdr) * 4); | |
107 | ||
108 | #if TCP_INPUT_DEBUG | |
109 | tcp_debug_print(tcphdr); | |
110 | #endif | |
111 | ||
112 | /* remove header from payload */ | |
113 | if (pbuf_header(p, -((s16_t)(IPH_HL(iphdr) * 4))) || (p->tot_len < sizeof(struct tcp_hdr))) { | |
114 | /* drop short packets */ | |
115 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: short packet (%"U16_F" bytes) discarded\n", p->tot_len)); | |
116 | TCP_STATS_INC(tcp.lenerr); | |
117 | TCP_STATS_INC(tcp.drop); | |
118 | snmp_inc_tcpinerrs(); | |
119 | pbuf_free(p); | |
120 | return; | |
121 | } | |
122 | ||
123 | /* Don't even process incoming broadcasts/multicasts. */ | |
124 | if (ip_addr_isbroadcast(&(iphdr->dest), inp) || | |
125 | ip_addr_ismulticast(&(iphdr->dest))) { | |
126 | TCP_STATS_INC(tcp.proterr); | |
127 | TCP_STATS_INC(tcp.drop); | |
128 | snmp_inc_tcpinerrs(); | |
129 | pbuf_free(p); | |
130 | return; | |
131 | } | |
132 | ||
133 | #if CHECKSUM_CHECK_TCP | |
134 | /* Verify TCP checksum. */ | |
135 | if (inet_chksum_pseudo(p, (struct ip_addr *)&(iphdr->src), | |
136 | (struct ip_addr *)&(iphdr->dest), | |
137 | IP_PROTO_TCP, p->tot_len) != 0) { | |
138 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: packet discarded due to failing checksum 0x%04"X16_F"\n", | |
139 | inet_chksum_pseudo(p, (struct ip_addr *)&(iphdr->src), (struct ip_addr *)&(iphdr->dest), | |
140 | IP_PROTO_TCP, p->tot_len))); | |
141 | #if TCP_DEBUG | |
142 | tcp_debug_print(tcphdr); | |
143 | #endif /* TCP_DEBUG */ | |
144 | TCP_STATS_INC(tcp.chkerr); | |
145 | TCP_STATS_INC(tcp.drop); | |
146 | snmp_inc_tcpinerrs(); | |
147 | pbuf_free(p); | |
148 | return; | |
149 | } | |
150 | #endif | |
151 | ||
152 | /* Move the payload pointer in the pbuf so that it points to the | |
153 | TCP data instead of the TCP header. */ | |
154 | hdrlen = TCPH_HDRLEN(tcphdr); | |
155 | if(pbuf_header(p, -(hdrlen * 4))){ | |
156 | /* drop short packets */ | |
157 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: short packet\n")); | |
158 | TCP_STATS_INC(tcp.lenerr); | |
159 | TCP_STATS_INC(tcp.drop); | |
160 | snmp_inc_tcpinerrs(); | |
161 | pbuf_free(p); | |
162 | return; | |
163 | } | |
164 | ||
165 | /* Convert fields in TCP header to host byte order. */ | |
166 | tcphdr->src = ntohs(tcphdr->src); | |
167 | tcphdr->dest = ntohs(tcphdr->dest); | |
168 | seqno = tcphdr->seqno = ntohl(tcphdr->seqno); | |
169 | ackno = tcphdr->ackno = ntohl(tcphdr->ackno); | |
170 | tcphdr->wnd = ntohs(tcphdr->wnd); | |
171 | ||
172 | flags = TCPH_FLAGS(tcphdr) & TCP_FLAGS; | |
173 | tcplen = p->tot_len + ((flags & TCP_FIN || flags & TCP_SYN)? 1: 0); | |
174 | ||
175 | /* Demultiplex an incoming segment. First, we check if it is destined | |
176 | for an active connection. */ | |
177 | prev = NULL; | |
178 | ||
179 | ||
180 | for(pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { | |
181 | LWIP_ASSERT("tcp_input: active pcb->state != CLOSED", pcb->state != CLOSED); | |
182 | LWIP_ASSERT("tcp_input: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT); | |
183 | LWIP_ASSERT("tcp_input: active pcb->state != LISTEN", pcb->state != LISTEN); | |
184 | if (pcb->remote_port == tcphdr->src && | |
185 | pcb->local_port == tcphdr->dest && | |
186 | ip_addr_cmp(&(pcb->remote_ip), &(iphdr->src)) && | |
187 | ip_addr_cmp(&(pcb->local_ip), &(iphdr->dest))) { | |
188 | ||
189 | /* Move this PCB to the front of the list so that subsequent | |
190 | lookups will be faster (we exploit locality in TCP segment | |
191 | arrivals). */ | |
192 | LWIP_ASSERT("tcp_input: pcb->next != pcb (before cache)", pcb->next != pcb); | |
193 | if (prev != NULL) { | |
194 | prev->next = pcb->next; | |
195 | pcb->next = tcp_active_pcbs; | |
196 | tcp_active_pcbs = pcb; | |
197 | } | |
198 | LWIP_ASSERT("tcp_input: pcb->next != pcb (after cache)", pcb->next != pcb); | |
199 | break; | |
200 | } | |
201 | prev = pcb; | |
202 | } | |
203 | ||
204 | if (pcb == NULL) { | |
205 | /* If it did not go to an active connection, we check the connections | |
206 | in the TIME-WAIT state. */ | |
207 | for(pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) { | |
208 | LWIP_ASSERT("tcp_input: TIME-WAIT pcb->state == TIME-WAIT", pcb->state == TIME_WAIT); | |
209 | if (pcb->remote_port == tcphdr->src && | |
210 | pcb->local_port == tcphdr->dest && | |
211 | ip_addr_cmp(&(pcb->remote_ip), &(iphdr->src)) && | |
212 | ip_addr_cmp(&(pcb->local_ip), &(iphdr->dest))) { | |
213 | /* We don't really care enough to move this PCB to the front | |
214 | of the list since we are not very likely to receive that | |
215 | many segments for connections in TIME-WAIT. */ | |
216 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: packed for TIME_WAITing connection.\n")); | |
217 | tcp_timewait_input(pcb); | |
218 | pbuf_free(p); | |
219 | return; | |
220 | } | |
221 | } | |
222 | ||
223 | /* Finally, if we still did not get a match, we check all PCBs that | |
224 | are LISTENing for incoming connections. */ | |
225 | prev = NULL; | |
226 | for(lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) { | |
227 | if ((ip_addr_isany(&(lpcb->local_ip)) || | |
228 | ip_addr_cmp(&(lpcb->local_ip), &(iphdr->dest))) && | |
229 | lpcb->local_port == tcphdr->dest) { | |
230 | /* Move this PCB to the front of the list so that subsequent | |
231 | lookups will be faster (we exploit locality in TCP segment | |
232 | arrivals). */ | |
233 | if (prev != NULL) { | |
234 | ((struct tcp_pcb_listen *)prev)->next = lpcb->next; | |
235 | /* our successor is the remainder of the listening list */ | |
236 | lpcb->next = tcp_listen_pcbs.listen_pcbs; | |
237 | /* put this listening pcb at the head of the listening list */ | |
238 | tcp_listen_pcbs.listen_pcbs = lpcb; | |
239 | } | |
240 | ||
241 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: packed for LISTENing connection.\n")); | |
242 | tcp_listen_input(lpcb); | |
243 | pbuf_free(p); | |
244 | return; | |
245 | } | |
246 | prev = (struct tcp_pcb *)lpcb; | |
247 | } | |
248 | } | |
249 | ||
250 | #if TCP_INPUT_DEBUG | |
251 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("+-+-+-+-+-+-+-+-+-+-+-+-+-+- tcp_input: flags ")); | |
252 | tcp_debug_print_flags(TCPH_FLAGS(tcphdr)); | |
253 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("-+-+-+-+-+-+-+-+-+-+-+-+-+-+\n")); | |
254 | #endif /* TCP_INPUT_DEBUG */ | |
255 | ||
256 | ||
257 | if (pcb != NULL) { | |
258 | /* The incoming segment belongs to a connection. */ | |
259 | #if TCP_INPUT_DEBUG | |
260 | #if TCP_DEBUG | |
261 | tcp_debug_print_state(pcb->state); | |
262 | #endif /* TCP_DEBUG */ | |
263 | #endif /* TCP_INPUT_DEBUG */ | |
264 | ||
265 | /* Set up a tcp_seg structure. */ | |
266 | inseg.next = NULL; | |
267 | inseg.len = p->tot_len; | |
268 | inseg.dataptr = p->payload; | |
269 | inseg.p = p; | |
270 | inseg.tcphdr = tcphdr; | |
271 | ||
272 | recv_data = NULL; | |
273 | recv_flags = 0; | |
274 | ||
275 | /* If there is data which was previously "refused" by upper layer */ | |
276 | if (pcb->refused_data != NULL) { | |
277 | /* Notify again application with data previously received. */ | |
278 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: notify kept packet\n")); | |
279 | TCP_EVENT_RECV(pcb, pcb->refused_data, ERR_OK, err); | |
280 | if (err == ERR_OK) { | |
281 | pcb->refused_data = NULL; | |
282 | } else { | |
283 | /* drop incoming packets, because pcb is "full" */ | |
284 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: drop incoming packets, because pcb is \"full\"\n")); | |
285 | TCP_STATS_INC(tcp.drop); | |
286 | snmp_inc_tcpinerrs(); | |
287 | pbuf_free(p); | |
288 | return; | |
289 | } | |
290 | } | |
291 | ||
292 | tcp_input_pcb = pcb; | |
293 | err = tcp_process(pcb); | |
294 | tcp_input_pcb = NULL; | |
295 | /* A return value of ERR_ABRT means that tcp_abort() was called | |
296 | and that the pcb has been freed. If so, we don't do anything. */ | |
297 | if (err != ERR_ABRT) { | |
298 | if (recv_flags & TF_RESET) { | |
299 | /* TF_RESET means that the connection was reset by the other | |
300 | end. We then call the error callback to inform the | |
301 | application that the connection is dead before we | |
302 | deallocate the PCB. */ | |
303 | TCP_EVENT_ERR(pcb->errf, pcb->callback_arg, ERR_RST); | |
304 | tcp_pcb_remove(&tcp_active_pcbs, pcb); | |
305 | memp_free(MEMP_TCP_PCB, pcb); | |
306 | } else if (recv_flags & TF_CLOSED) { | |
307 | /* The connection has been closed and we will deallocate the | |
308 | PCB. */ | |
309 | tcp_pcb_remove(&tcp_active_pcbs, pcb); | |
310 | memp_free(MEMP_TCP_PCB, pcb); | |
311 | } else { | |
312 | err = ERR_OK; | |
313 | /* If the application has registered a "sent" function to be | |
314 | called when new send buffer space is available, we call it | |
315 | now. */ | |
316 | if (pcb->acked > 0) { | |
317 | TCP_EVENT_SENT(pcb, pcb->acked, err); | |
318 | } | |
319 | ||
320 | if (recv_data != NULL) { | |
321 | if(flags & TCP_PSH) { | |
322 | recv_data->flags |= PBUF_FLAG_PUSH; | |
323 | } | |
324 | ||
325 | /* Notify application that data has been received. */ | |
326 | TCP_EVENT_RECV(pcb, recv_data, ERR_OK, err); | |
327 | ||
328 | /* If the upper layer can't receive this data, store it */ | |
329 | if (err != ERR_OK) { | |
330 | pcb->refused_data = recv_data; | |
331 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: keep incoming packet, because pcb is \"full\"\n")); | |
332 | } | |
333 | } | |
334 | ||
335 | /* If a FIN segment was received, we call the callback | |
336 | function with a NULL buffer to indicate EOF. */ | |
337 | if (recv_flags & TF_GOT_FIN) { | |
338 | TCP_EVENT_RECV(pcb, NULL, ERR_OK, err); | |
339 | } | |
340 | ||
341 | /* If there were no errors, we try to send something out. */ | |
342 | if (err == ERR_OK) { | |
343 | tcp_output(pcb); | |
344 | } | |
345 | } | |
346 | } | |
347 | ||
348 | ||
349 | /* give up our reference to inseg.p */ | |
350 | if (inseg.p != NULL) | |
351 | { | |
352 | pbuf_free(inseg.p); | |
353 | inseg.p = NULL; | |
354 | } | |
355 | #if TCP_INPUT_DEBUG | |
356 | #if TCP_DEBUG | |
357 | tcp_debug_print_state(pcb->state); | |
358 | #endif /* TCP_DEBUG */ | |
359 | #endif /* TCP_INPUT_DEBUG */ | |
360 | ||
361 | } else { | |
362 | ||
363 | /* If no matching PCB was found, send a TCP RST (reset) to the | |
364 | sender. */ | |
365 | LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_input: no PCB match found, resetting.\n")); | |
366 | if (!(TCPH_FLAGS(tcphdr) & TCP_RST)) { | |
367 | TCP_STATS_INC(tcp.proterr); | |
368 | TCP_STATS_INC(tcp.drop); | |
369 | tcp_rst(ackno, seqno + tcplen, | |
370 | &(iphdr->dest), &(iphdr->src), | |
371 | tcphdr->dest, tcphdr->src); | |
372 | } | |
373 | pbuf_free(p); | |
374 | } | |
375 | ||
376 | LWIP_ASSERT("tcp_input: tcp_pcbs_sane()", tcp_pcbs_sane()); | |
377 | PERF_STOP("tcp_input"); | |
378 | } | |
379 | ||
380 | /** | |
381 | * Called by tcp_input() when a segment arrives for a listening | |
382 | * connection (from tcp_input()). | |
383 | * | |
384 | * @param pcb the tcp_pcb_listen for which a segment arrived | |
385 | * @return ERR_OK if the segment was processed | |
386 | * another err_t on error | |
387 | * | |
388 | * @note the return value is not (yet?) used in tcp_input() | |
389 | * @note the segment which arrived is saved in global variables, therefore only the pcb | |
390 | * involved is passed as a parameter to this function | |
391 | */ | |
392 | static err_t | |
393 | tcp_listen_input(struct tcp_pcb_listen *pcb) | |
394 | { | |
395 | struct tcp_pcb *npcb; | |
396 | u32_t optdata; | |
397 | ||
398 | /* In the LISTEN state, we check for incoming SYN segments, | |
399 | creates a new PCB, and responds with a SYN|ACK. */ | |
400 | if (flags & TCP_ACK) { | |
401 | /* For incoming segments with the ACK flag set, respond with a | |
402 | RST. */ | |
403 | LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_listen_input: ACK in LISTEN, sending reset\n")); | |
404 | tcp_rst(ackno + 1, seqno + tcplen, | |
405 | &(iphdr->dest), &(iphdr->src), | |
406 | tcphdr->dest, tcphdr->src); | |
407 | } else if (flags & TCP_SYN) { | |
408 | LWIP_DEBUGF(TCP_DEBUG, ("TCP connection request %"U16_F" -> %"U16_F".\n", tcphdr->src, tcphdr->dest)); | |
409 | #if TCP_LISTEN_BACKLOG | |
410 | if (pcb->accepts_pending >= pcb->backlog) { | |
411 | return ERR_ABRT; | |
412 | } | |
413 | #endif /* TCP_LISTEN_BACKLOG */ | |
414 | npcb = tcp_alloc(pcb->prio); | |
415 | /* If a new PCB could not be created (probably due to lack of memory), | |
416 | we don't do anything, but rely on the sender will retransmit the | |
417 | SYN at a time when we have more memory available. */ | |
418 | if (npcb == NULL) { | |
419 | LWIP_DEBUGF(TCP_DEBUG, ("tcp_listen_input: could not allocate PCB\n")); | |
420 | TCP_STATS_INC(tcp.memerr); | |
421 | return ERR_MEM; | |
422 | } | |
423 | #if TCP_LISTEN_BACKLOG | |
424 | pcb->accepts_pending++; | |
425 | #endif /* TCP_LISTEN_BACKLOG */ | |
426 | /* Set up the new PCB. */ | |
427 | ip_addr_set(&(npcb->local_ip), &(iphdr->dest)); | |
428 | npcb->local_port = pcb->local_port; | |
429 | ip_addr_set(&(npcb->remote_ip), &(iphdr->src)); | |
430 | npcb->remote_port = tcphdr->src; | |
431 | npcb->state = SYN_RCVD; | |
432 | npcb->rcv_nxt = seqno + 1; | |
433 | npcb->snd_wnd = tcphdr->wnd; | |
434 | npcb->ssthresh = npcb->snd_wnd; | |
435 | npcb->snd_wl1 = seqno - 1;/* initialise to seqno-1 to force window update */ | |
436 | npcb->callback_arg = pcb->callback_arg; | |
437 | #if LWIP_CALLBACK_API | |
438 | npcb->accept = pcb->accept; | |
439 | #endif /* LWIP_CALLBACK_API */ | |
440 | /* inherit socket options */ | |
441 | npcb->so_options = pcb->so_options & (SOF_DEBUG|SOF_DONTROUTE|SOF_KEEPALIVE|SOF_OOBINLINE|SOF_LINGER); | |
442 | /* Register the new PCB so that we can begin receiving segments | |
443 | for it. */ | |
444 | TCP_REG(&tcp_active_pcbs, npcb); | |
445 | ||
446 | /* Parse any options in the SYN. */ | |
447 | tcp_parseopt(npcb); | |
448 | #if TCP_CALCULATE_EFF_SEND_MSS | |
449 | npcb->mss = tcp_eff_send_mss(npcb->mss, &(npcb->remote_ip)); | |
450 | #endif /* TCP_CALCULATE_EFF_SEND_MSS */ | |
451 | ||
452 | snmp_inc_tcppassiveopens(); | |
453 | ||
454 | /* Build an MSS option. */ | |
455 | optdata = TCP_BUILD_MSS_OPTION(); | |
456 | /* Send a SYN|ACK together with the MSS option. */ | |
457 | tcp_enqueue(npcb, NULL, 0, TCP_SYN | TCP_ACK, 0, (u8_t *)&optdata, 4); | |
458 | return tcp_output(npcb); | |
459 | } | |
460 | return ERR_OK; | |
461 | } | |
462 | ||
463 | /** | |
464 | * Called by tcp_input() when a segment arrives for a connection in | |
465 | * TIME_WAIT. | |
466 | * | |
467 | * @param pcb the tcp_pcb for which a segment arrived | |
468 | * | |
469 | * @note the segment which arrived is saved in global variables, therefore only the pcb | |
470 | * involved is passed as a parameter to this function | |
471 | */ | |
472 | static err_t | |
473 | tcp_timewait_input(struct tcp_pcb *pcb) | |
474 | { | |
475 | if (TCP_SEQ_GT(seqno + tcplen, pcb->rcv_nxt)) { | |
476 | pcb->rcv_nxt = seqno + tcplen; | |
477 | } | |
478 | if (tcplen > 0) { | |
479 | tcp_ack_now(pcb); | |
480 | } | |
481 | return tcp_output(pcb); | |
482 | } | |
483 | ||
484 | /** | |
485 | * Implements the TCP state machine. Called by tcp_input. In some | |
486 | * states tcp_receive() is called to receive data. The tcp_seg | |
487 | * argument will be freed by the caller (tcp_input()) unless the | |
488 | * recv_data pointer in the pcb is set. | |
489 | * | |
490 | * @param pcb the tcp_pcb for which a segment arrived | |
491 | * | |
492 | * @note the segment which arrived is saved in global variables, therefore only the pcb | |
493 | * involved is passed as a parameter to this function | |
494 | */ | |
495 | static err_t | |
496 | tcp_process(struct tcp_pcb *pcb) | |
497 | { | |
498 | struct tcp_seg *rseg; | |
499 | u8_t acceptable = 0; | |
500 | err_t err; | |
501 | u8_t accepted_inseq; | |
502 | ||
503 | err = ERR_OK; | |
504 | ||
505 | /* Process incoming RST segments. */ | |
506 | if (flags & TCP_RST) { | |
507 | /* First, determine if the reset is acceptable. */ | |
508 | if (pcb->state == SYN_SENT) { | |
509 | if (ackno == pcb->snd_nxt) { | |
510 | acceptable = 1; | |
511 | } | |
512 | } else { | |
513 | if (TCP_SEQ_BETWEEN(seqno, pcb->rcv_nxt, | |
514 | pcb->rcv_nxt+pcb->rcv_ann_wnd)) { | |
515 | acceptable = 1; | |
516 | } | |
517 | } | |
518 | ||
519 | if (acceptable) { | |
520 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_process: Connection RESET\n")); | |
521 | LWIP_ASSERT("tcp_input: pcb->state != CLOSED", pcb->state != CLOSED); | |
522 | recv_flags = TF_RESET; | |
523 | pcb->flags &= ~TF_ACK_DELAY; | |
524 | return ERR_RST; | |
525 | } else { | |
526 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_process: unacceptable reset seqno %"U32_F" rcv_nxt %"U32_F"\n", | |
527 | seqno, pcb->rcv_nxt)); | |
528 | LWIP_DEBUGF(TCP_DEBUG, ("tcp_process: unacceptable reset seqno %"U32_F" rcv_nxt %"U32_F"\n", | |
529 | seqno, pcb->rcv_nxt)); | |
530 | return ERR_OK; | |
531 | } | |
532 | } | |
533 | ||
534 | /* Update the PCB (in)activity timer. */ | |
535 | pcb->tmr = tcp_ticks; | |
536 | pcb->keep_cnt_sent = 0; | |
537 | ||
538 | /* Do different things depending on the TCP state. */ | |
539 | switch (pcb->state) { | |
540 | case SYN_SENT: | |
541 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("SYN-SENT: ackno %"U32_F" pcb->snd_nxt %"U32_F" unacked %"U32_F"\n", ackno, | |
542 | pcb->snd_nxt, ntohl(pcb->unacked->tcphdr->seqno))); | |
543 | /* received SYN ACK with expected sequence number? */ | |
544 | if ((flags & TCP_ACK) && (flags & TCP_SYN) | |
545 | && ackno == ntohl(pcb->unacked->tcphdr->seqno) + 1) { | |
546 | pcb->snd_buf++; | |
547 | pcb->rcv_nxt = seqno + 1; | |
548 | pcb->lastack = ackno; | |
549 | pcb->snd_wnd = tcphdr->wnd; | |
550 | pcb->snd_wl1 = seqno - 1; /* initialise to seqno - 1 to force window update */ | |
551 | pcb->state = ESTABLISHED; | |
552 | ||
553 | /* Parse any options in the SYNACK before using pcb->mss since that | |
554 | * can be changed by the received options! */ | |
555 | tcp_parseopt(pcb); | |
556 | #if TCP_CALCULATE_EFF_SEND_MSS | |
557 | pcb->mss = tcp_eff_send_mss(pcb->mss, &(pcb->remote_ip)); | |
558 | #endif /* TCP_CALCULATE_EFF_SEND_MSS */ | |
559 | ||
560 | /* Set ssthresh again after changing pcb->mss (already set in tcp_connect | |
561 | * but for the default value of pcb->mss) */ | |
562 | pcb->ssthresh = pcb->mss * 10; | |
563 | ||
564 | pcb->cwnd = ((pcb->cwnd == 1) ? (pcb->mss * 2) : pcb->mss); | |
565 | LWIP_ASSERT("pcb->snd_queuelen > 0", (pcb->snd_queuelen > 0)); | |
566 | --pcb->snd_queuelen; | |
567 | LWIP_DEBUGF(TCP_QLEN_DEBUG, ("tcp_process: SYN-SENT --queuelen %"U16_F"\n", (u16_t)pcb->snd_queuelen)); | |
568 | rseg = pcb->unacked; | |
569 | pcb->unacked = rseg->next; | |
570 | ||
571 | /* If there's nothing left to acknowledge, stop the retransmit | |
572 | timer, otherwise reset it to start again */ | |
573 | if(pcb->unacked == NULL) | |
574 | pcb->rtime = -1; | |
575 | else { | |
576 | pcb->rtime = 0; | |
577 | pcb->nrtx = 0; | |
578 | } | |
579 | ||
580 | tcp_seg_free(rseg); | |
581 | ||
582 | /* Call the user specified function to call when sucessfully | |
583 | * connected. */ | |
584 | TCP_EVENT_CONNECTED(pcb, ERR_OK, err); | |
585 | tcp_ack_now(pcb); | |
586 | } | |
587 | /* received ACK? possibly a half-open connection */ | |
588 | else if (flags & TCP_ACK) { | |
589 | /* send a RST to bring the other side in a non-synchronized state. */ | |
590 | tcp_rst(ackno, seqno + tcplen, &(iphdr->dest), &(iphdr->src), | |
591 | tcphdr->dest, tcphdr->src); | |
592 | } | |
593 | break; | |
594 | case SYN_RCVD: | |
595 | if (flags & TCP_ACK && | |
596 | !(flags & TCP_RST)) { | |
597 | /* expected ACK number? */ | |
598 | if (TCP_SEQ_BETWEEN(ackno, pcb->lastack+1, pcb->snd_nxt)) { | |
599 | u16_t old_cwnd; | |
600 | pcb->state = ESTABLISHED; | |
601 | LWIP_DEBUGF(TCP_DEBUG, ("TCP connection established %"U16_F" -> %"U16_F".\n", inseg.tcphdr->src, inseg.tcphdr->dest)); | |
602 | #if LWIP_CALLBACK_API | |
603 | LWIP_ASSERT("pcb->accept != NULL", pcb->accept != NULL); | |
604 | #endif | |
605 | /* Call the accept function. */ | |
606 | TCP_EVENT_ACCEPT(pcb, ERR_OK, err); | |
607 | if (err != ERR_OK) { | |
608 | /* If the accept function returns with an error, we abort | |
609 | * the connection. */ | |
610 | tcp_abort(pcb); | |
611 | return ERR_ABRT; | |
612 | } | |
613 | old_cwnd = pcb->cwnd; | |
614 | /* If there was any data contained within this ACK, | |
615 | * we'd better pass it on to the application as well. */ | |
616 | accepted_inseq = tcp_receive(pcb); | |
617 | ||
618 | pcb->cwnd = ((old_cwnd == 1) ? (pcb->mss * 2) : pcb->mss); | |
619 | ||
620 | if ((flags & TCP_FIN) && accepted_inseq) { | |
621 | tcp_ack_now(pcb); | |
622 | pcb->state = CLOSE_WAIT; | |
623 | } | |
624 | } | |
625 | /* incorrect ACK number */ | |
626 | else { | |
627 | /* send RST */ | |
628 | tcp_rst(ackno, seqno + tcplen, &(iphdr->dest), &(iphdr->src), | |
629 | tcphdr->dest, tcphdr->src); | |
630 | } | |
631 | } | |
632 | break; | |
633 | case CLOSE_WAIT: | |
634 | /* FALLTHROUGH */ | |
635 | case ESTABLISHED: | |
636 | accepted_inseq = tcp_receive(pcb); | |
637 | if ((flags & TCP_FIN) && accepted_inseq) { /* passive close */ | |
638 | tcp_ack_now(pcb); | |
639 | pcb->state = CLOSE_WAIT; | |
640 | } | |
641 | break; | |
642 | case FIN_WAIT_1: | |
643 | tcp_receive(pcb); | |
644 | if (flags & TCP_FIN) { | |
645 | if (flags & TCP_ACK && ackno == pcb->snd_nxt) { | |
646 | LWIP_DEBUGF(TCP_DEBUG, | |
647 | ("TCP connection closed %"U16_F" -> %"U16_F".\n", inseg.tcphdr->src, inseg.tcphdr->dest)); | |
648 | tcp_ack_now(pcb); | |
649 | tcp_pcb_purge(pcb); | |
650 | TCP_RMV(&tcp_active_pcbs, pcb); | |
651 | pcb->state = TIME_WAIT; | |
652 | TCP_REG(&tcp_tw_pcbs, pcb); | |
653 | } else { | |
654 | tcp_ack_now(pcb); | |
655 | pcb->state = CLOSING; | |
656 | } | |
657 | } else if (flags & TCP_ACK && ackno == pcb->snd_nxt) { | |
658 | pcb->state = FIN_WAIT_2; | |
659 | } | |
660 | break; | |
661 | case FIN_WAIT_2: | |
662 | tcp_receive(pcb); | |
663 | if (flags & TCP_FIN) { | |
664 | LWIP_DEBUGF(TCP_DEBUG, ("TCP connection closed %"U16_F" -> %"U16_F".\n", inseg.tcphdr->src, inseg.tcphdr->dest)); | |
665 | tcp_ack_now(pcb); | |
666 | tcp_pcb_purge(pcb); | |
667 | TCP_RMV(&tcp_active_pcbs, pcb); | |
668 | pcb->state = TIME_WAIT; | |
669 | TCP_REG(&tcp_tw_pcbs, pcb); | |
670 | } | |
671 | break; | |
672 | case CLOSING: | |
673 | tcp_receive(pcb); | |
674 | if (flags & TCP_ACK && ackno == pcb->snd_nxt) { | |
675 | LWIP_DEBUGF(TCP_DEBUG, ("TCP connection closed %"U16_F" -> %"U16_F".\n", inseg.tcphdr->src, inseg.tcphdr->dest)); | |
676 | tcp_ack_now(pcb); | |
677 | tcp_pcb_purge(pcb); | |
678 | TCP_RMV(&tcp_active_pcbs, pcb); | |
679 | pcb->state = TIME_WAIT; | |
680 | TCP_REG(&tcp_tw_pcbs, pcb); | |
681 | } | |
682 | break; | |
683 | case LAST_ACK: | |
684 | tcp_receive(pcb); | |
685 | if (flags & TCP_ACK && ackno == pcb->snd_nxt) { | |
686 | LWIP_DEBUGF(TCP_DEBUG, ("TCP connection closed %"U16_F" -> %"U16_F".\n", inseg.tcphdr->src, inseg.tcphdr->dest)); | |
687 | /* bugfix #21699: don't set pcb->state to CLOSED here or we risk leaking segments */ | |
688 | recv_flags = TF_CLOSED; | |
689 | } | |
690 | break; | |
691 | default: | |
692 | break; | |
693 | } | |
694 | return ERR_OK; | |
695 | } | |
696 | ||
697 | /** | |
698 | * Called by tcp_process. Checks if the given segment is an ACK for outstanding | |
699 | * data, and if so frees the memory of the buffered data. Next, is places the | |
700 | * segment on any of the receive queues (pcb->recved or pcb->ooseq). If the segment | |
701 | * is buffered, the pbuf is referenced by pbuf_ref so that it will not be freed until | |
702 | * i it has been removed from the buffer. | |
703 | * | |
704 | * If the incoming segment constitutes an ACK for a segment that was used for RTT | |
705 | * estimation, the RTT is estimated here as well. | |
706 | * | |
707 | * Called from tcp_process(). | |
708 | * | |
709 | * @return 1 if the incoming segment is the next in sequence, 0 if not | |
710 | */ | |
711 | static u8_t | |
712 | tcp_receive(struct tcp_pcb *pcb) | |
713 | { | |
714 | struct tcp_seg *next; | |
715 | #if TCP_QUEUE_OOSEQ | |
716 | struct tcp_seg *prev, *cseg; | |
717 | #endif | |
718 | struct pbuf *p; | |
719 | s32_t off; | |
720 | s16_t m; | |
721 | u32_t right_wnd_edge; | |
722 | u16_t new_tot_len; | |
723 | u8_t accepted_inseq = 0; | |
724 | ||
725 | if (flags & TCP_ACK) { | |
726 | right_wnd_edge = pcb->snd_wnd + pcb->snd_wl1; | |
727 | ||
728 | /* Update window. */ | |
729 | if (TCP_SEQ_LT(pcb->snd_wl1, seqno) || | |
730 | (pcb->snd_wl1 == seqno && TCP_SEQ_LT(pcb->snd_wl2, ackno)) || | |
731 | (pcb->snd_wl2 == ackno && tcphdr->wnd > pcb->snd_wnd)) { | |
732 | pcb->snd_wnd = tcphdr->wnd; | |
733 | pcb->snd_wl1 = seqno; | |
734 | pcb->snd_wl2 = ackno; | |
735 | if (pcb->snd_wnd > 0 && pcb->persist_backoff > 0) { | |
736 | pcb->persist_backoff = 0; | |
737 | } | |
738 | LWIP_DEBUGF(TCP_WND_DEBUG, ("tcp_receive: window update %"U16_F"\n", pcb->snd_wnd)); | |
739 | #if TCP_WND_DEBUG | |
740 | } else { | |
741 | if (pcb->snd_wnd != tcphdr->wnd) { | |
742 | LWIP_DEBUGF(TCP_WND_DEBUG, ("tcp_receive: no window update lastack %"U32_F" snd_max %"U32_F" ackno %"U32_F" wl1 %"U32_F" seqno %"U32_F" wl2 %"U32_F"\n", | |
743 | pcb->lastack, pcb->snd_max, ackno, pcb->snd_wl1, seqno, pcb->snd_wl2)); | |
744 | } | |
745 | #endif /* TCP_WND_DEBUG */ | |
746 | } | |
747 | ||
748 | if (pcb->lastack == ackno) { | |
749 | pcb->acked = 0; | |
750 | ||
751 | if (pcb->snd_wl1 + pcb->snd_wnd == right_wnd_edge){ | |
752 | ++pcb->dupacks; | |
753 | if (pcb->dupacks >= 3 && pcb->unacked != NULL) { | |
754 | if (!(pcb->flags & TF_INFR)) { | |
755 | /* This is fast retransmit. Retransmit the first unacked segment. */ | |
756 | LWIP_DEBUGF(TCP_FR_DEBUG, ("tcp_receive: dupacks %"U16_F" (%"U32_F"), fast retransmit %"U32_F"\n", | |
757 | (u16_t)pcb->dupacks, pcb->lastack, | |
758 | ntohl(pcb->unacked->tcphdr->seqno))); | |
759 | tcp_rexmit(pcb); | |
760 | /* Set ssthresh to max (FlightSize / 2, 2*SMSS) */ | |
761 | /*pcb->ssthresh = LWIP_MAX((pcb->snd_max - | |
762 | pcb->lastack) / 2, | |
763 | 2 * pcb->mss);*/ | |
764 | /* Set ssthresh to half of the minimum of the current cwnd and the advertised window */ | |
765 | if (pcb->cwnd > pcb->snd_wnd) | |
766 | pcb->ssthresh = pcb->snd_wnd / 2; | |
767 | else | |
768 | pcb->ssthresh = pcb->cwnd / 2; | |
769 | ||
770 | /* The minimum value for ssthresh should be 2 MSS */ | |
771 | if (pcb->ssthresh < 2*pcb->mss) { | |
772 | LWIP_DEBUGF(TCP_FR_DEBUG, ("tcp_receive: The minimum value for ssthresh %"U16_F" should be min 2 mss %"U16_F"...\n", pcb->ssthresh, 2*pcb->mss)); | |
773 | pcb->ssthresh = 2*pcb->mss; | |
774 | } | |
775 | ||
776 | pcb->cwnd = pcb->ssthresh + 3 * pcb->mss; | |
777 | pcb->flags |= TF_INFR; | |
778 | } else { | |
779 | /* Inflate the congestion window, but not if it means that | |
780 | the value overflows. */ | |
781 | if ((u16_t)(pcb->cwnd + pcb->mss) > pcb->cwnd) { | |
782 | pcb->cwnd += pcb->mss; | |
783 | } | |
784 | } | |
785 | } | |
786 | } else { | |
787 | LWIP_DEBUGF(TCP_FR_DEBUG, ("tcp_receive: dupack averted %"U32_F" %"U32_F"\n", | |
788 | pcb->snd_wl1 + pcb->snd_wnd, right_wnd_edge)); | |
789 | } | |
790 | } else if (TCP_SEQ_BETWEEN(ackno, pcb->lastack+1, pcb->snd_max)){ | |
791 | /* We come here when the ACK acknowledges new data. */ | |
792 | ||
793 | /* Reset the "IN Fast Retransmit" flag, since we are no longer | |
794 | in fast retransmit. Also reset the congestion window to the | |
795 | slow start threshold. */ | |
796 | if (pcb->flags & TF_INFR) { | |
797 | pcb->flags &= ~TF_INFR; | |
798 | pcb->cwnd = pcb->ssthresh; | |
799 | } | |
800 | ||
801 | /* Reset the number of retransmissions. */ | |
802 | pcb->nrtx = 0; | |
803 | ||
804 | /* Reset the retransmission time-out. */ | |
805 | pcb->rto = (pcb->sa >> 3) + pcb->sv; | |
806 | ||
807 | /* Update the send buffer space. Diff between the two can never exceed 64K? */ | |
808 | pcb->acked = (u16_t)(ackno - pcb->lastack); | |
809 | ||
810 | pcb->snd_buf += pcb->acked; | |
811 | ||
812 | /* Reset the fast retransmit variables. */ | |
813 | pcb->dupacks = 0; | |
814 | pcb->lastack = ackno; | |
815 | ||
816 | /* Update the congestion control variables (cwnd and | |
817 | ssthresh). */ | |
818 | if (pcb->state >= ESTABLISHED) { | |
819 | if (pcb->cwnd < pcb->ssthresh) { | |
820 | if ((u16_t)(pcb->cwnd + pcb->mss) > pcb->cwnd) { | |
821 | pcb->cwnd += pcb->mss; | |
822 | } | |
823 | LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_receive: slow start cwnd %"U16_F"\n", pcb->cwnd)); | |
824 | } else { | |
825 | u16_t new_cwnd = (pcb->cwnd + pcb->mss * pcb->mss / pcb->cwnd); | |
826 | if (new_cwnd > pcb->cwnd) { | |
827 | pcb->cwnd = new_cwnd; | |
828 | } | |
829 | LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_receive: congestion avoidance cwnd %"U16_F"\n", pcb->cwnd)); | |
830 | } | |
831 | } | |
832 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_receive: ACK for %"U32_F", unacked->seqno %"U32_F":%"U32_F"\n", | |
833 | ackno, | |
834 | pcb->unacked != NULL? | |
835 | ntohl(pcb->unacked->tcphdr->seqno): 0, | |
836 | pcb->unacked != NULL? | |
837 | ntohl(pcb->unacked->tcphdr->seqno) + TCP_TCPLEN(pcb->unacked): 0)); | |
838 | ||
839 | /* Remove segment from the unacknowledged list if the incoming | |
840 | ACK acknowlegdes them. */ | |
841 | while (pcb->unacked != NULL && | |
842 | TCP_SEQ_LEQ(ntohl(pcb->unacked->tcphdr->seqno) + | |
843 | TCP_TCPLEN(pcb->unacked), ackno)) { | |
844 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_receive: removing %"U32_F":%"U32_F" from pcb->unacked\n", | |
845 | ntohl(pcb->unacked->tcphdr->seqno), | |
846 | ntohl(pcb->unacked->tcphdr->seqno) + | |
847 | TCP_TCPLEN(pcb->unacked))); | |
848 | ||
849 | next = pcb->unacked; | |
850 | pcb->unacked = pcb->unacked->next; | |
851 | ||
852 | LWIP_DEBUGF(TCP_QLEN_DEBUG, ("tcp_receive: queuelen %"U16_F" ... ", (u16_t)pcb->snd_queuelen)); | |
853 | LWIP_ASSERT("pcb->snd_queuelen >= pbuf_clen(next->p)", (pcb->snd_queuelen >= pbuf_clen(next->p))); | |
854 | pcb->snd_queuelen -= pbuf_clen(next->p); | |
855 | tcp_seg_free(next); | |
856 | ||
857 | LWIP_DEBUGF(TCP_QLEN_DEBUG, ("%"U16_F" (after freeing unacked)\n", (u16_t)pcb->snd_queuelen)); | |
858 | if (pcb->snd_queuelen != 0) { | |
859 | LWIP_ASSERT("tcp_receive: valid queue length", pcb->unacked != NULL || | |
860 | pcb->unsent != NULL); | |
861 | } | |
862 | } | |
863 | ||
864 | /* If there's nothing left to acknowledge, stop the retransmit | |
865 | timer, otherwise reset it to start again */ | |
866 | if(pcb->unacked == NULL) | |
867 | pcb->rtime = -1; | |
868 | else | |
869 | pcb->rtime = 0; | |
870 | ||
871 | pcb->polltmr = 0; | |
872 | } else { | |
873 | /* Fix bug bug #21582: out of sequence ACK, didn't really ack anything */ | |
874 | pcb->acked = 0; | |
875 | } | |
876 | ||
877 | /* We go through the ->unsent list to see if any of the segments | |
878 | on the list are acknowledged by the ACK. This may seem | |
879 | strange since an "unsent" segment shouldn't be acked. The | |
880 | rationale is that lwIP puts all outstanding segments on the | |
881 | ->unsent list after a retransmission, so these segments may | |
882 | in fact have been sent once. */ | |
883 | while (pcb->unsent != NULL && | |
884 | /*TCP_SEQ_LEQ(ntohl(pcb->unsent->tcphdr->seqno) + TCP_TCPLEN(pcb->unsent), ackno) && | |
885 | TCP_SEQ_LEQ(ackno, pcb->snd_max)*/ | |
886 | TCP_SEQ_BETWEEN(ackno, ntohl(pcb->unsent->tcphdr->seqno) + TCP_TCPLEN(pcb->unsent), pcb->snd_max) | |
887 | ) { | |
888 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_receive: removing %"U32_F":%"U32_F" from pcb->unsent\n", | |
889 | ntohl(pcb->unsent->tcphdr->seqno), ntohl(pcb->unsent->tcphdr->seqno) + | |
890 | TCP_TCPLEN(pcb->unsent))); | |
891 | ||
892 | next = pcb->unsent; | |
893 | pcb->unsent = pcb->unsent->next; | |
894 | LWIP_DEBUGF(TCP_QLEN_DEBUG, ("tcp_receive: queuelen %"U16_F" ... ", (u16_t)pcb->snd_queuelen)); | |
895 | LWIP_ASSERT("pcb->snd_queuelen >= pbuf_clen(next->p)", (pcb->snd_queuelen >= pbuf_clen(next->p))); | |
896 | pcb->snd_queuelen -= pbuf_clen(next->p); | |
897 | tcp_seg_free(next); | |
898 | LWIP_DEBUGF(TCP_QLEN_DEBUG, ("%"U16_F" (after freeing unsent)\n", (u16_t)pcb->snd_queuelen)); | |
899 | if (pcb->snd_queuelen != 0) { | |
900 | LWIP_ASSERT("tcp_receive: valid queue length", | |
901 | pcb->unacked != NULL || pcb->unsent != NULL); | |
902 | } | |
903 | ||
904 | if (pcb->unsent != NULL) { | |
905 | pcb->snd_nxt = htonl(pcb->unsent->tcphdr->seqno); | |
906 | } | |
907 | } | |
908 | /* End of ACK for new data processing. */ | |
909 | ||
910 | LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_receive: pcb->rttest %"U32_F" rtseq %"U32_F" ackno %"U32_F"\n", | |
911 | pcb->rttest, pcb->rtseq, ackno)); | |
912 | ||
913 | /* RTT estimation calculations. This is done by checking if the | |
914 | incoming segment acknowledges the segment we use to take a | |
915 | round-trip time measurement. */ | |
916 | if (pcb->rttest && TCP_SEQ_LT(pcb->rtseq, ackno)) { | |
917 | /* diff between this shouldn't exceed 32K since this are tcp timer ticks | |
918 | and a round-trip shouldn't be that long... */ | |
919 | m = (s16_t)(tcp_ticks - pcb->rttest); | |
920 | ||
921 | LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_receive: experienced rtt %"U16_F" ticks (%"U16_F" msec).\n", | |
922 | m, m * TCP_SLOW_INTERVAL)); | |
923 | ||
924 | /* This is taken directly from VJs original code in his paper */ | |
925 | m = m - (pcb->sa >> 3); | |
926 | pcb->sa += m; | |
927 | if (m < 0) { | |
928 | m = -m; | |
929 | } | |
930 | m = m - (pcb->sv >> 2); | |
931 | pcb->sv += m; | |
932 | pcb->rto = (pcb->sa >> 3) + pcb->sv; | |
933 | ||
934 | LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_receive: RTO %"U16_F" (%"U16_F" milliseconds)\n", | |
935 | pcb->rto, pcb->rto * TCP_SLOW_INTERVAL)); | |
936 | ||
937 | pcb->rttest = 0; | |
938 | } | |
939 | } | |
940 | ||
941 | /* If the incoming segment contains data, we must process it | |
942 | further. */ | |
943 | if (tcplen > 0) { | |
944 | /* This code basically does three things: | |
945 | ||
946 | +) If the incoming segment contains data that is the next | |
947 | in-sequence data, this data is passed to the application. This | |
948 | might involve trimming the first edge of the data. The rcv_nxt | |
949 | variable and the advertised window are adjusted. | |
950 | ||
951 | +) If the incoming segment has data that is above the next | |
952 | sequence number expected (->rcv_nxt), the segment is placed on | |
953 | the ->ooseq queue. This is done by finding the appropriate | |
954 | place in the ->ooseq queue (which is ordered by sequence | |
955 | number) and trim the segment in both ends if needed. An | |
956 | immediate ACK is sent to indicate that we received an | |
957 | out-of-sequence segment. | |
958 | ||
959 | +) Finally, we check if the first segment on the ->ooseq queue | |
960 | now is in sequence (i.e., if rcv_nxt >= ooseq->seqno). If | |
961 | rcv_nxt > ooseq->seqno, we must trim the first edge of the | |
962 | segment on ->ooseq before we adjust rcv_nxt. The data in the | |
963 | segments that are now on sequence are chained onto the | |
964 | incoming segment so that we only need to call the application | |
965 | once. | |
966 | */ | |
967 | ||
968 | /* First, we check if we must trim the first edge. We have to do | |
969 | this if the sequence number of the incoming segment is less | |
970 | than rcv_nxt, and the sequence number plus the length of the | |
971 | segment is larger than rcv_nxt. */ | |
972 | /* if (TCP_SEQ_LT(seqno, pcb->rcv_nxt)){ | |
973 | if (TCP_SEQ_LT(pcb->rcv_nxt, seqno + tcplen)) {*/ | |
974 | if (TCP_SEQ_BETWEEN(pcb->rcv_nxt, seqno + 1, seqno + tcplen - 1)){ | |
975 | /* Trimming the first edge is done by pushing the payload | |
976 | pointer in the pbuf downwards. This is somewhat tricky since | |
977 | we do not want to discard the full contents of the pbuf up to | |
978 | the new starting point of the data since we have to keep the | |
979 | TCP header which is present in the first pbuf in the chain. | |
980 | ||
981 | What is done is really quite a nasty hack: the first pbuf in | |
982 | the pbuf chain is pointed to by inseg.p. Since we need to be | |
983 | able to deallocate the whole pbuf, we cannot change this | |
984 | inseg.p pointer to point to any of the later pbufs in the | |
985 | chain. Instead, we point the ->payload pointer in the first | |
986 | pbuf to data in one of the later pbufs. We also set the | |
987 | inseg.data pointer to point to the right place. This way, the | |
988 | ->p pointer will still point to the first pbuf, but the | |
989 | ->p->payload pointer will point to data in another pbuf. | |
990 | ||
991 | After we are done with adjusting the pbuf pointers we must | |
992 | adjust the ->data pointer in the seg and the segment | |
993 | length.*/ | |
994 | ||
995 | off = pcb->rcv_nxt - seqno; | |
996 | p = inseg.p; | |
997 | LWIP_ASSERT("inseg.p != NULL", inseg.p); | |
998 | LWIP_ASSERT("insane offset!", (off < 0x7fff)); | |
999 | if (inseg.p->len < off) { | |
1000 | LWIP_ASSERT("pbuf too short!", (((s32_t)inseg.p->tot_len) >= off)); | |
1001 | new_tot_len = (u16_t)(inseg.p->tot_len - off); | |
1002 | while (p->len < off) { | |
1003 | off -= p->len; | |
1004 | /* KJM following line changed (with addition of new_tot_len var) | |
1005 | to fix bug #9076 | |
1006 | inseg.p->tot_len -= p->len; */ | |
1007 | p->tot_len = new_tot_len; | |
1008 | p->len = 0; | |
1009 | p = p->next; | |
1010 | } | |
1011 | if(pbuf_header(p, (s16_t)-off)) { | |
1012 | /* Do we need to cope with this failing? Assert for now */ | |
1013 | LWIP_ASSERT("pbuf_header failed", 0); | |
1014 | } | |
1015 | } else { | |
1016 | if(pbuf_header(inseg.p, (s16_t)-off)) { | |
1017 | /* Do we need to cope with this failing? Assert for now */ | |
1018 | LWIP_ASSERT("pbuf_header failed", 0); | |
1019 | } | |
1020 | } | |
1021 | /* KJM following line changed to use p->payload rather than inseg->p->payload | |
1022 | to fix bug #9076 */ | |
1023 | inseg.dataptr = p->payload; | |
1024 | inseg.len -= (u16_t)(pcb->rcv_nxt - seqno); | |
1025 | inseg.tcphdr->seqno = seqno = pcb->rcv_nxt; | |
1026 | } | |
1027 | else { | |
1028 | if (TCP_SEQ_LT(seqno, pcb->rcv_nxt)){ | |
1029 | /* the whole segment is < rcv_nxt */ | |
1030 | /* must be a duplicate of a packet that has already been correctly handled */ | |
1031 | ||
1032 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_receive: duplicate seqno %"U32_F"\n", seqno)); | |
1033 | tcp_ack_now(pcb); | |
1034 | } | |
1035 | } | |
1036 | ||
1037 | /* The sequence number must be within the window (above rcv_nxt | |
1038 | and below rcv_nxt + rcv_wnd) in order to be further | |
1039 | processed. */ | |
1040 | if (TCP_SEQ_BETWEEN(seqno, pcb->rcv_nxt, | |
1041 | pcb->rcv_nxt + pcb->rcv_ann_wnd - 1)){ | |
1042 | if (pcb->rcv_nxt == seqno) { | |
1043 | accepted_inseq = 1; | |
1044 | /* The incoming segment is the next in sequence. We check if | |
1045 | we have to trim the end of the segment and update rcv_nxt | |
1046 | and pass the data to the application. */ | |
1047 | #if TCP_QUEUE_OOSEQ | |
1048 | if (pcb->ooseq != NULL && | |
1049 | TCP_SEQ_LEQ(pcb->ooseq->tcphdr->seqno, seqno + inseg.len)) { | |
1050 | if (pcb->ooseq->len > 0) { | |
1051 | /* We have to trim the second edge of the incoming | |
1052 | segment. */ | |
1053 | inseg.len = (u16_t)(pcb->ooseq->tcphdr->seqno - seqno); | |
1054 | pbuf_realloc(inseg.p, inseg.len); | |
1055 | } else { | |
1056 | /* does the ooseq segment contain only flags that are in inseg also? */ | |
1057 | if ((TCPH_FLAGS(inseg.tcphdr) & (TCP_FIN|TCP_SYN)) == | |
1058 | (TCPH_FLAGS(pcb->ooseq->tcphdr) & (TCP_FIN|TCP_SYN))) { | |
1059 | struct tcp_seg *old_ooseq = pcb->ooseq; | |
1060 | pcb->ooseq = pcb->ooseq->next; | |
1061 | memp_free(MEMP_TCP_SEG, old_ooseq); | |
1062 | } | |
1063 | } | |
1064 | } | |
1065 | #endif /* TCP_QUEUE_OOSEQ */ | |
1066 | ||
1067 | tcplen = TCP_TCPLEN(&inseg); | |
1068 | ||
1069 | /* First received FIN will be ACKed +1, on any successive (duplicate) | |
1070 | * FINs we are already in CLOSE_WAIT and have already done +1. | |
1071 | */ | |
1072 | if (pcb->state != CLOSE_WAIT) { | |
1073 | pcb->rcv_nxt += tcplen; | |
1074 | } | |
1075 | ||
1076 | /* Update the receiver's (our) window. */ | |
1077 | if (pcb->rcv_wnd < tcplen) { | |
1078 | pcb->rcv_wnd = 0; | |
1079 | } else { | |
1080 | pcb->rcv_wnd -= tcplen; | |
1081 | } | |
1082 | ||
1083 | if (pcb->rcv_ann_wnd < tcplen) { | |
1084 | pcb->rcv_ann_wnd = 0; | |
1085 | } else { | |
1086 | pcb->rcv_ann_wnd -= tcplen; | |
1087 | } | |
1088 | ||
1089 | /* If there is data in the segment, we make preparations to | |
1090 | pass this up to the application. The ->recv_data variable | |
1091 | is used for holding the pbuf that goes to the | |
1092 | application. The code for reassembling out-of-sequence data | |
1093 | chains its data on this pbuf as well. | |
1094 | ||
1095 | If the segment was a FIN, we set the TF_GOT_FIN flag that will | |
1096 | be used to indicate to the application that the remote side has | |
1097 | closed its end of the connection. */ | |
1098 | if (inseg.p->tot_len > 0) { | |
1099 | recv_data = inseg.p; | |
1100 | /* Since this pbuf now is the responsibility of the | |
1101 | application, we delete our reference to it so that we won't | |
1102 | (mistakingly) deallocate it. */ | |
1103 | inseg.p = NULL; | |
1104 | } | |
1105 | if (TCPH_FLAGS(inseg.tcphdr) & TCP_FIN) { | |
1106 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_receive: received FIN.\n")); | |
1107 | recv_flags = TF_GOT_FIN; | |
1108 | } | |
1109 | ||
1110 | #if TCP_QUEUE_OOSEQ | |
1111 | /* We now check if we have segments on the ->ooseq queue that | |
1112 | is now in sequence. */ | |
1113 | while (pcb->ooseq != NULL && | |
1114 | pcb->ooseq->tcphdr->seqno == pcb->rcv_nxt) { | |
1115 | ||
1116 | cseg = pcb->ooseq; | |
1117 | seqno = pcb->ooseq->tcphdr->seqno; | |
1118 | ||
1119 | pcb->rcv_nxt += TCP_TCPLEN(cseg); | |
1120 | if (pcb->rcv_wnd < TCP_TCPLEN(cseg)) { | |
1121 | pcb->rcv_wnd = 0; | |
1122 | } else { | |
1123 | pcb->rcv_wnd -= TCP_TCPLEN(cseg); | |
1124 | } | |
1125 | if (pcb->rcv_ann_wnd < TCP_TCPLEN(cseg)) { | |
1126 | pcb->rcv_ann_wnd = 0; | |
1127 | } else { | |
1128 | pcb->rcv_ann_wnd -= TCP_TCPLEN(cseg); | |
1129 | } | |
1130 | ||
1131 | if (cseg->p->tot_len > 0) { | |
1132 | /* Chain this pbuf onto the pbuf that we will pass to | |
1133 | the application. */ | |
1134 | if (recv_data) { | |
1135 | pbuf_cat(recv_data, cseg->p); | |
1136 | } else { | |
1137 | recv_data = cseg->p; | |
1138 | } | |
1139 | cseg->p = NULL; | |
1140 | } | |
1141 | if (TCPH_FLAGS(cseg->tcphdr) & TCP_FIN) { | |
1142 | LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_receive: dequeued FIN.\n")); | |
1143 | recv_flags = TF_GOT_FIN; | |
1144 | if (pcb->state == ESTABLISHED) { /* force passive close or we can move to active close */ | |
1145 | pcb->state = CLOSE_WAIT; | |
1146 | } | |
1147 | } | |
1148 | ||
1149 | ||
1150 | pcb->ooseq = cseg->next; | |
1151 | tcp_seg_free(cseg); | |
1152 | } | |
1153 | #endif /* TCP_QUEUE_OOSEQ */ | |
1154 | ||
1155 | ||
1156 | /* Acknowledge the segment(s). */ | |
1157 | tcp_ack(pcb); | |
1158 | ||
1159 | } else { | |
1160 | /* We get here if the incoming segment is out-of-sequence. */ | |
1161 | tcp_ack_now(pcb); | |
1162 | #if TCP_QUEUE_OOSEQ | |
1163 | /* We queue the segment on the ->ooseq queue. */ | |
1164 | if (pcb->ooseq == NULL) { | |
1165 | pcb->ooseq = tcp_seg_copy(&inseg); | |
1166 | } else { | |
1167 | /* If the queue is not empty, we walk through the queue and | |
1168 | try to find a place where the sequence number of the | |
1169 | incoming segment is between the sequence numbers of the | |
1170 | previous and the next segment on the ->ooseq queue. That is | |
1171 | the place where we put the incoming segment. If needed, we | |
1172 | trim the second edges of the previous and the incoming | |
1173 | segment so that it will fit into the sequence. | |
1174 | ||
1175 | If the incoming segment has the same sequence number as a | |
1176 | segment on the ->ooseq queue, we discard the segment that | |
1177 | contains less data. */ | |
1178 | ||
1179 | prev = NULL; | |
1180 | for(next = pcb->ooseq; next != NULL; next = next->next) { | |
1181 | if (seqno == next->tcphdr->seqno) { | |
1182 | /* The sequence number of the incoming segment is the | |
1183 | same as the sequence number of the segment on | |
1184 | ->ooseq. We check the lengths to see which one to | |
1185 | discard. */ | |
1186 | if (inseg.len > next->len) { | |
1187 | /* The incoming segment is larger than the old | |
1188 | segment. We replace the old segment with the new | |
1189 | one. */ | |
1190 | cseg = tcp_seg_copy(&inseg); | |
1191 | if (cseg != NULL) { | |
1192 | cseg->next = next->next; | |
1193 | if (prev != NULL) { | |
1194 | prev->next = cseg; | |
1195 | } else { | |
1196 | pcb->ooseq = cseg; | |
1197 | } | |
1198 | } | |
1199 | tcp_seg_free(next); | |
1200 | if (cseg->next != NULL) { | |
1201 | next = cseg->next; | |
1202 | if (TCP_SEQ_GT(seqno + cseg->len, next->tcphdr->seqno)) { | |
1203 | /* We need to trim the incoming segment. */ | |
1204 | cseg->len = (u16_t)(next->tcphdr->seqno - seqno); | |
1205 | pbuf_realloc(cseg->p, cseg->len); | |
1206 | } | |
1207 | } | |
1208 | break; | |
1209 | } else { | |
1210 | /* Either the lenghts are the same or the incoming | |
1211 | segment was smaller than the old one; in either | |
1212 | case, we ditch the incoming segment. */ | |
1213 | break; | |
1214 | } | |
1215 | } else { | |
1216 | if (prev == NULL) { | |
1217 | if (TCP_SEQ_LT(seqno, next->tcphdr->seqno)) { | |
1218 | /* The sequence number of the incoming segment is lower | |
1219 | than the sequence number of the first segment on the | |
1220 | queue. We put the incoming segment first on the | |
1221 | queue. */ | |
1222 | ||
1223 | if (TCP_SEQ_GT(seqno + inseg.len, next->tcphdr->seqno)) { | |
1224 | /* We need to trim the incoming segment. */ | |
1225 | inseg.len = (u16_t)(next->tcphdr->seqno - seqno); | |
1226 | pbuf_realloc(inseg.p, inseg.len); | |
1227 | } | |
1228 | cseg = tcp_seg_copy(&inseg); | |
1229 | if (cseg != NULL) { | |
1230 | cseg->next = next; | |
1231 | pcb->ooseq = cseg; | |
1232 | } | |
1233 | break; | |
1234 | } | |
1235 | } else | |
1236 | /*if (TCP_SEQ_LT(prev->tcphdr->seqno, seqno) && | |
1237 | TCP_SEQ_LT(seqno, next->tcphdr->seqno)) {*/ | |
1238 | if(TCP_SEQ_BETWEEN(seqno, prev->tcphdr->seqno+1, next->tcphdr->seqno-1)){ | |
1239 | /* The sequence number of the incoming segment is in | |
1240 | between the sequence numbers of the previous and | |
1241 | the next segment on ->ooseq. We trim and insert the | |
1242 | incoming segment and trim the previous segment, if | |
1243 | needed. */ | |
1244 | if (TCP_SEQ_GT(seqno + inseg.len, next->tcphdr->seqno)) { | |
1245 | /* We need to trim the incoming segment. */ | |
1246 | inseg.len = (u16_t)(next->tcphdr->seqno - seqno); | |
1247 | pbuf_realloc(inseg.p, inseg.len); | |
1248 | } | |
1249 | ||
1250 | cseg = tcp_seg_copy(&inseg); | |
1251 | if (cseg != NULL) { | |
1252 | cseg->next = next; | |
1253 | prev->next = cseg; | |
1254 | if (TCP_SEQ_GT(prev->tcphdr->seqno + prev->len, seqno)) { | |
1255 | /* We need to trim the prev segment. */ | |
1256 | prev->len = (u16_t)(seqno - prev->tcphdr->seqno); | |
1257 | pbuf_realloc(prev->p, prev->len); | |
1258 | } | |
1259 | } | |
1260 | break; | |
1261 | } | |
1262 | /* If the "next" segment is the last segment on the | |
1263 | ooseq queue, we add the incoming segment to the end | |
1264 | of the list. */ | |
1265 | if (next->next == NULL && | |
1266 | TCP_SEQ_GT(seqno, next->tcphdr->seqno)) { | |
1267 | next->next = tcp_seg_copy(&inseg); | |
1268 | if (next->next != NULL) { | |
1269 | if (TCP_SEQ_GT(next->tcphdr->seqno + next->len, seqno)) { | |
1270 | /* We need to trim the last segment. */ | |
1271 | next->len = (u16_t)(seqno - next->tcphdr->seqno); | |
1272 | pbuf_realloc(next->p, next->len); | |
1273 | } | |
1274 | } | |
1275 | break; | |
1276 | } | |
1277 | } | |
1278 | prev = next; | |
1279 | } | |
1280 | } | |
1281 | #endif /* TCP_QUEUE_OOSEQ */ | |
1282 | ||
1283 | } | |
1284 | } else { | |
1285 | if(!TCP_SEQ_BETWEEN(seqno, pcb->rcv_nxt, | |
1286 | pcb->rcv_nxt + pcb->rcv_ann_wnd-1)){ | |
1287 | tcp_ack_now(pcb); | |
1288 | } | |
1289 | } | |
1290 | } else { | |
1291 | /* Segments with length 0 is taken care of here. Segments that | |
1292 | fall out of the window are ACKed. */ | |
1293 | /*if (TCP_SEQ_GT(pcb->rcv_nxt, seqno) || | |
1294 | TCP_SEQ_GEQ(seqno, pcb->rcv_nxt + pcb->rcv_wnd)) {*/ | |
1295 | if(!TCP_SEQ_BETWEEN(seqno, pcb->rcv_nxt, pcb->rcv_nxt + pcb->rcv_wnd-1)){ | |
1296 | tcp_ack_now(pcb); | |
1297 | } | |
1298 | } | |
1299 | return accepted_inseq; | |
1300 | } | |
1301 | ||
1302 | /** | |
1303 | * Parses the options contained in the incoming segment. (Code taken | |
1304 | * from uIP with only small changes.) | |
1305 | * | |
1306 | * Called from tcp_listen_input() and tcp_process(). | |
1307 | * Currently, only the MSS option is supported! | |
1308 | * | |
1309 | * @param pcb the tcp_pcb for which a segment arrived | |
1310 | */ | |
1311 | static void | |
1312 | tcp_parseopt(struct tcp_pcb *pcb) | |
1313 | { | |
1314 | u8_t c; | |
1315 | u8_t *opts, opt; | |
1316 | u16_t mss; | |
1317 | ||
1318 | opts = (u8_t *)tcphdr + TCP_HLEN; | |
1319 | ||
1320 | /* Parse the TCP MSS option, if present. */ | |
1321 | if(TCPH_HDRLEN(tcphdr) > 0x5) { | |
1322 | for(c = 0; c < (TCPH_HDRLEN(tcphdr) - 5) << 2 ;) { | |
1323 | opt = opts[c]; | |
1324 | if (opt == 0x00) { | |
1325 | /* End of options. */ | |
1326 | break; | |
1327 | } else if (opt == 0x01) { | |
1328 | ++c; | |
1329 | /* NOP option. */ | |
1330 | } else if (opt == 0x02 && | |
1331 | opts[c + 1] == 0x04) { | |
1332 | /* An MSS option with the right option length. */ | |
1333 | mss = (opts[c + 2] << 8) | opts[c + 3]; | |
1334 | pcb->mss = mss > TCP_MSS? TCP_MSS: mss; | |
1335 | ||
1336 | /* And we are done processing options. */ | |
1337 | break; | |
1338 | } else { | |
1339 | if (opts[c + 1] == 0) { | |
1340 | /* If the length field is zero, the options are malformed | |
1341 | and we don't process them further. */ | |
1342 | break; | |
1343 | } | |
1344 | /* All other options have a length field, so that we easily | |
1345 | can skip past them. */ | |
1346 | c += opts[c + 1]; | |
1347 | } | |
1348 | } | |
1349 | } | |
1350 | } | |
1351 | ||
1352 | #endif /* LWIP_TCP */ |