3 * by Joshua Wise and Chris Lu
5 * An implementation of a pipelined algorithm to calculate the Mandelbrot set
6 * in real time on an FPGA.
16 output reg [11:0] xout = `WHIRRRRR, yout = 0,
17 output wire [11:0] xoutreal, youtreal,
20 reg [11:0] x = 0, y = 0; // Used for generating border and timing.
24 parameter XFPORCH = 16;
26 parameter XBPORCH = 48;
28 parameter YFPORCH = 10;
30 parameter YBPORCH = 29;
32 always @(posedge pixclk)
34 if (x >= (`XRES + XFPORCH + XSYNC + XBPORCH))
36 if (y >= (`YRES + YFPORCH + YSYNC + YBPORCH))
44 if (xout >= (`XRES + XFPORCH + XSYNC + XBPORCH))
46 if (yout >= (`YRES + YFPORCH + YSYNC + YBPORCH))
53 hs <= (x >= (`XRES + XFPORCH)) && (x < (`XRES + XFPORCH + XSYNC));
54 vs <= (y >= (`YRES + YFPORCH)) && (y < (`YRES + YFPORCH + YSYNC));
55 border <= (x > `XRES) || (y > `YRES);
61 module NaiveMultiplier(
65 output reg [12:0] out,
72 (((y[12] ? (x ) : 0) +
73 (y[11] ? (x >> 1) : 0) +
74 (y[10] ? (x >> 2) : 0)) +
75 (((y[9] ? (x >> 3) : 0) +
76 (y[8] ? (x >> 4) : 0))+
77 ((y[7] ? (x >> 5) : 0) +
78 (y[6] ? (x >> 6) : 0))))+
80 (((y[5] ? (x >> 7) : 0) +
81 (y[4] ? (x >> 8) : 0)+
82 (y[3] ? (x >> 9) : 0)) +
83 ((y[2] ? (x >> 10): 0) +
84 (y[1] ? (x >> 11): 0) +
85 (y[0] ? (x >> 12): 0)));
86 sign <= xsign ^ ysign;
95 output wire [12:0] out,
97 output wire overflow);
99 NaiveMultiplier nm(clk, x, y, xsign, ysign, out, sign, overflow);
110 input [7:0] ibail, icuriter,
111 output reg [12:0] xout, yout,
112 output reg xsout, ysout,
113 output reg [14:0] rout, iout,
114 output reg rsout, isout,
115 output reg [7:0] obail, ocuriter);
118 wire [14:0] ri, diff;
119 wire [15:0] twocdiff;
120 wire r2sign, i2sign, risign, dsign;
127 reg [7:0] ibaild, curiterd;
131 Multiplier r2m(clk, r[12:0], r[12:0], rsign, rsign, r2[12:0], r2sign, r2[13]);
132 Multiplier i2m(clk, i[12:0], i[12:0], isign, isign, i2[12:0], i2sign, i2[13]);
133 Multiplier rim(clk, r[12:0], i[12:0], rsign, isign, ri[13:1], risign, ri[14]);
135 assign bigsum = r2[12:0] + i2[12:0];
136 assign bigsum_ovf = bigsum[13] | r2[13] | i2[13];
138 assign twocdiff = r2 - i2;
139 assign diff = twocdiff[15] ? -twocdiff : twocdiff;
140 assign dsign = twocdiff[15];
142 wire [15:0] twocrout = xd - diff;
143 wire [15:0] twociout = yd - ri;
145 always @ (posedge clk)
156 curiterd <= icuriter;
157 ineedbaild <= r[13] | r[14] | i[13] | i[14];
160 if (xsd ^ dsign) begin
161 if (twocrout[15]) begin // diff > xd
170 rsout <= xsd; // xsd == dsign
174 if (ysd ^ risign) begin
175 if (twociout[15]) begin // ri > yd
187 // If we haven't bailed out, and we meet any of the bailout conditions,
188 // bail out now. Otherwise, leave the bailout at whatever it was before.
189 if ((ibaild == 255) && (bigsum_ovf | ineedbaild))
193 ocuriter <= curiterd + 8'b1;
202 input [13:0] xofs, yofs,
203 input [7:0] colorofs,
205 output reg [2:0] red, green, output reg [1:0] blue);
213 assign nx = x + xofs;
214 assign ny = y + yofs;
215 assign rx = (nx[13] ? -nx[12:0] : nx[12:0]) << scale;
216 assign rxsign = nx[13];
217 assign ry = (ny[13] ? -ny[12:0] : ny[12:0]) << scale;
218 assign rysign = ny[13];
220 wire [14:0] mr[`MAXOUTN:0], mi[`MAXOUTN:0];
221 wire mrs[`MAXOUTN:0], mis[`MAXOUTN:0];
222 wire [7:0] mb[`MAXOUTN:0];
223 wire [12:0] xprop[`MAXOUTN:0], yprop[`MAXOUTN:0];
224 wire xsprop[`MAXOUTN:0], ysprop[`MAXOUTN:0];
225 wire [7:0] curiter[`MAXOUTN:0];
227 reg [14:0] initx, inity, initr, initi;
228 reg [7:0] initci, initb;
229 reg initxs, initys, initrs, initis;
231 // Values after the number of iterations denoted by the subscript.
232 reg [14:0] stagex [2:1], stagey [2:1], stager [2:1], stagei [2:1];
233 reg [7:0] stageci [2:1], stageb [2:1];
234 reg stagexs [2:1], stageys [2:1], stagers [2:1], stageis [2:1];
236 reg [2:0] state = 3'b001; // One-hot encoded state.
238 // States are advanced one from what they should be, so that they'll
239 // get there on the _next_ mclk.
240 always @(posedge mclk)
242 initx <= (state[2]) ? rx :
243 (state[0]) ? stagex[1] :
244 (state[1]) ? stagex[2] : 0;
245 inity <= (state[2]) ? ry :
246 (state[0]) ? stagey[1] :
247 (state[1]) ? stagey[2] : 0;
248 initr <= (state[2]) ? rx :
249 (state[0]) ? stager[1] :
250 (state[1]) ? stager[2] : 0;
251 initi <= (state[2]) ? ry :
252 (state[0]) ? stagei[1] :
253 (state[1]) ? stagei[2] : 0;
254 initxs <= (state[2]) ? rxsign :
255 (state[0]) ? stagexs[1] :
256 (state[1]) ? stagexs[2] : 0;
257 initys <= (state[2]) ? rysign :
258 (state[0]) ? stageys[1] :
259 (state[1]) ? stageys[2] : 0;
260 initrs <= (state[2]) ? rxsign :
261 (state[0]) ? stagers[1] :
262 (state[1]) ? stagers[2] : 0;
263 initis <= (state[2]) ? rysign :
264 (state[0]) ? stageis[1] :
265 (state[1]) ? stageis[2] : 0;
266 initb <= (state[2]) ? 8'b11111111 :
267 (state[0]) ? stageb[1] :
268 (state[1]) ? stageb[2] : 0;
269 initci <= (state[2]) ? 8'b00000000 :
270 (state[0]) ? stageci[1] :
271 (state[1]) ? stageci[2] : 0;
276 // We detect when the state should be poked by a high negedge followed
277 // by a high posedge -- if that happens, then we're guaranteed that the
278 // state following the current state will be 3'b100.
280 always @(negedge mclk)
283 always @(posedge mclk)
285 if (lastneg && pixclk) // If a pixclk has happened, the state should be reset.
287 else // Otherwise, just poke it forward.
289 3'b001: state <= 3'b010;
290 3'b010: state <= 3'b100;
291 3'b100: state <= 3'b001;
294 // Data output handling
296 {red, green, blue} <= {out[0],out[3],out[6],out[1],out[4],out[7],out[2],out[5]};
299 out <= ~mb[`MAXOUTN] + colorofs;
302 if (state[0]) begin // PnR0 in, PnR2 out
303 stagex[2] <= xprop[`MAXOUTN];
304 stagey[2] <= yprop[`MAXOUTN];
305 stager[2] <= mr[`MAXOUTN];
306 stagei[2] <= mi[`MAXOUTN];
307 stagexs[2] <= xsprop[`MAXOUTN];
308 stageys[2] <= ysprop[`MAXOUTN];
309 stagers[2] <= mrs[`MAXOUTN];
310 stageis[2] <= mis[`MAXOUTN];
311 stageb[2] <= mb[`MAXOUTN];
312 stageci[2] <= curiter[`MAXOUTN];
315 if (state[2]) begin // PnR2 in, PnR1 out
316 stagex[1] <= xprop[`MAXOUTN];
317 stagey[1] <= yprop[`MAXOUTN];
318 stager[1] <= mr[`MAXOUTN];
319 stagei[1] <= mi[`MAXOUTN];
320 stagexs[1] <= xsprop[`MAXOUTN];
321 stageys[1] <= ysprop[`MAXOUTN];
322 stagers[1] <= mrs[`MAXOUTN];
323 stageis[1] <= mis[`MAXOUTN];
324 stageb[1] <= mb[`MAXOUTN];
325 stageci[1] <= curiter[`MAXOUTN];
331 initx, inity, initxs, initys,
332 initr, initi, initrs, initis,
334 xprop[0], yprop[0], xsprop[0], ysprop[0],
335 mr[0], mi[0], mrs[0], mis[0],
338 `define MAKE_UNIT(name, num) \
339 MandelUnit name(mclk, \
340 xprop[(num)], yprop[(num)], xsprop[(num)], ysprop[(num)], mr[(num)], mi[(num)], mrs[(num)], mis[(num)], mb[(num)], curiter[(num)], \
341 xprop[(num)+1], yprop[(num)+1], xsprop[(num)+1], ysprop[(num)+1], mr[(num)+1], mi[(num)+1], mrs[(num)+1], mis[(num)+1], mb[(num)+1], curiter[(num)+1])
360 output wire [2:0] red, green, output wire [1:0] blue);
362 reg [1:0] logo[8191:0];
363 initial $readmemb("logo.readmemb", logo);
365 assign enb = (x < 96) && (y < 64);
366 wire [12:0] addr = {y[5:0], x[6:0]};
367 wire [1:0] data = logo[addr];
368 assign {red, green, blue} =
369 (data == 2'b00) ? 8'b00000000 :
370 ((data == 2'b01) ? 8'b00011100 :
371 ((data == 2'b10) ? 8'b11100000 :
376 input gclk, output wire dcmok,
378 output wire [2:0] red, green, output [1:0] blue,
379 input left, right, up, down, rst, cycle, logooff,
382 wire pixclk, mclk, gclk2, clk;
384 assign dcmok = dcm1ok && dcm2ok;
386 IBUFG iclkbuf(.O(clk), .I(gclk));
388 pixDCM dcm( // CLKIN is 50MHz xtal, CLKFX_OUT is 25MHz
402 reg [13:0] xofs = -`XRES/2, yofs = -`YRES/2;
403 reg [5:0] slowctr = 0;
404 reg [7:0] colorcycle = 0;
405 wire [11:0] realx, realy;
408 wire [2:0] mandelr, mandelg, logor, logog;
409 wire [1:0] mandelb, logob;
411 SyncGen sync(pixclk, vs, hs, x, y, realx, realy, border);
412 Mandelbrot mandel(mclk, pixclk, x, y, xofs, yofs, cycle ? colorcycle : 0, scale, mandelr, mandelg, mandelb);
413 Logo logo(pixclk, realx, realy, logoenb, logor, logog, logob);
415 assign {red,green,blue} =
416 border ? 8'b00000000 :
417 (!logooff && logoenb) ? {logor, logog, logob} : {mandelr, mandelg, mandelb};
427 if (up) yofs <= yofs + 1;
428 else if (down) yofs <= yofs - 1;
430 if (left) xofs <= xofs + 1;
431 else if (right) xofs <= xofs - 1;
434 colorcycle <= colorcycle + 1;
440 slowctr <= slowctr + 1;