3 * by Joshua Wise and Chris Lu
5 * An implementation of a pipelined algorithm to calculate the Mandelbrot set
6 * in real time on an FPGA.
16 output reg [11:0] xout = `WHIRRRRR, yout = 0,
17 output wire [11:0] xoutreal, youtreal,
20 reg [11:0] x = 0, y = 0; // Used for generating border and timing.
24 parameter XFPORCH = 16;
26 parameter XBPORCH = 48;
28 parameter YFPORCH = 10;
30 parameter YBPORCH = 29;
32 always @(posedge pixclk)
34 if (x >= (`XRES + XFPORCH + XSYNC + XBPORCH))
36 if (y >= (`YRES + YFPORCH + YSYNC + YBPORCH))
44 if (xout >= (`XRES + XFPORCH + XSYNC + XBPORCH))
46 if (yout >= (`YRES + YFPORCH + YSYNC + YBPORCH))
53 hs <= (x >= (`XRES + XFPORCH)) && (x < (`XRES + XFPORCH + XSYNC));
54 vs <= (y >= (`YRES + YFPORCH)) && (y < (`YRES + YFPORCH + YSYNC));
55 border <= (x > `XRES) || (y > `YRES);
61 module NaiveMultiplier(
65 output reg [12:0] out,
67 output reg [1:0] ovf);
72 (((y[12] ? (x ) : 0) +
73 (y[11] ? (x >> 1) : 0) +
74 (y[10] ? (x >> 2) : 0) +
75 (y[9] ? (x >> 3) : 0)) +
76 ((y[8] ? (x >> 4) : 0) +
77 (y[7] ? (x >> 5) : 0) +
78 (y[6] ? (x >> 6) : 0)))+
79 (((y[5] ? (x >> 7) : 0) +
80 (y[4] ? (x >> 8) : 0) +
81 (y[3] ? (x >> 9) : 0)) +
82 ((y[2] ? (x >> 10): 0) +
83 (y[1] ? (x >> 11): 0) +
84 (y[0] ? (x >> 12): 0)));
85 sign <= xsign ^ ysign;
94 output wire [12:0] out,
96 output wire [1:0] overflow);
98 NaiveMultiplier nm(clk, x, y, xsign, ysign, out, sign, overflow);
108 input [7:0] ibail, icuriter,
109 output reg [12:0] xout, yout,
110 output reg xsout, ysout,
111 output reg [14:0] rout, iout,
112 output reg rsout, isout,
113 output reg [7:0] obail, ocuriter);
115 wire [14:0] r2, i2, ri, diff;
116 wire r2sign, i2sign, risign, dsign;
118 wire bigsum_ovf, rin_ovf, iin_ovf, throwaway;
123 reg [7:0] ibaild, curiterd;
127 Multiplier r2m(clk, r[12:0], r[12:0], rsign, rsign, r2[12:0], r2sign, r2[14:13]);
128 Multiplier i2m(clk, i[12:0], i[12:0], isign, isign, i2[12:0], i2sign, i2[14:13]);
129 Multiplier rim(clk, r[12:0], i[12:0], rsign, isign, ri[13:1], risign, {throwaway,ri[14]});
131 assign bigsum = r2 + i2;
132 assign bigsum_ovf = bigsum[16] | bigsum[15] | bigsum[14];
135 assign diff = (r2 > i2) ? r2 - i2 : i2 - r2;
136 assign dsign = (r2 > i2) ? 0 : 1;
138 always @ (posedge clk)
149 curiterd <= icuriter;
153 if (xsd ^ dsign) begin
166 if (ysd ^ risign) begin
179 // If we haven't bailed out, and we meet any of the bailout conditions,
180 // bail out now. Otherwise, leave the bailout at whatever it was before.
181 if ((ibaild == 255) && (bigsum_ovf | rin_ovf | iin_ovf))
185 ocuriter <= curiterd + 8'b1;
194 input [13:0] xofs, yofs,
195 input [7:0] colorofs,
197 output reg [2:0] red, green, output reg [1:0] blue);
203 assign nx = x + xofs;
204 assign ny = y + yofs;
205 assign rx = (nx[13] ? -nx[12:0] : nx[12:0]) << scale;
206 assign rxsign = nx[13];
207 assign ry = (ny[13] ? -ny[12:0] : ny[12:0]) << scale;
208 assign rysign = ny[13];
211 wire [14:0] mr[9:0], mi[9:0];
212 wire mrs[9:0], mis[9:0];
214 wire [12:0] xprop[9:0], yprop[9:0];
215 wire xsprop[9:0], ysprop[9:0];
216 wire [7:0] curiter[9:0];
218 wire [13:0] initx, inity, initr, initi;
219 wire [7:0] initci, initb;
220 wire initxs, initys, initrs, initis;
222 reg [14:0] loopx, loopy, loopr, loopi;
223 reg [7:0] loopci, loopb;
224 reg loopxs, loopys, looprs, loopis;
229 // A new value to be loaded comes in, and a value in need of loopback comes out.
231 // A new value in need of loopback comes in, and a completed value comes out.
233 assign initx = state ? rx : loopx;
234 assign inity = state ? ry : loopy;
235 assign initr = state ? rx : loopr;
236 assign initi = state ? ry : loopi;
237 assign initxs = state ? rxsign : loopxs;
238 assign initys = state ? rysign : loopys;
239 assign initrs = state ? rxsign : looprs;
240 assign initis = state ? rysign : loopis;
241 assign initb = state ? 8'b11111111 : loopb;
242 assign initci = state ? 8'b00000000 : loopci;
246 always @(negedge mclk)
247 pixclksync <= ~pixclk;
249 always @(posedge mclk)
252 out <= ~mb[9] + colorofs;
254 {red, green, blue} <= {out[0],out[3],out[6],out[1],out[4],out[7],out[2],out[5]};
264 loopci <= curiter[9];
266 state <= ~pixclksync;
271 initx, inity, initxs, initys,
272 initr, initi, initrs, initis,
274 xprop[0], yprop[0], xsprop[0], ysprop[0],
275 mr[0], mi[0], mrs[0], mis[0],
279 xprop[0], yprop[0], xsprop[0], ysprop[0], mr[0], mi[0], mrs[0], mis[0], mb[0], curiter[0],
280 xprop[1], yprop[1], xsprop[1], ysprop[1], mr[1], mi[1], mrs[1], mis[1], mb[1], curiter[1]);
282 xprop[1], yprop[1], xsprop[1], ysprop[1], mr[1], mi[1], mrs[1], mis[1], mb[1], curiter[1],
283 xprop[2], yprop[2], xsprop[2], ysprop[2], mr[2], mi[2], mrs[2], mis[2], mb[2], curiter[2]);
285 xprop[2], yprop[2], xsprop[2], ysprop[2], mr[2], mi[2], mrs[2], mis[2], mb[2], curiter[2],
286 xprop[3], yprop[3], xsprop[3], ysprop[3], mr[3], mi[3], mrs[3], mis[3], mb[3], curiter[3]);
288 xprop[3], yprop[3], xsprop[3], ysprop[3], mr[3], mi[3], mrs[3], mis[3], mb[3], curiter[3],
289 xprop[4], yprop[4], xsprop[4], ysprop[4], mr[4], mi[4], mrs[4], mis[4], mb[4], curiter[4]);
291 xprop[4], yprop[4], xsprop[4], ysprop[4], mr[4], mi[4], mrs[4], mis[4], mb[4], curiter[4],
292 xprop[5], yprop[5], xsprop[5], ysprop[5], mr[5], mi[5], mrs[5], mis[5], mb[5], curiter[5]);
294 xprop[5], yprop[5], xsprop[5], ysprop[5], mr[5], mi[5], mrs[5], mis[5], mb[5], curiter[5],
295 xprop[6], yprop[6], xsprop[6], ysprop[6], mr[6], mi[6], mrs[6], mis[6], mb[6], curiter[6]);
297 xprop[6], yprop[6], xsprop[6], ysprop[6], mr[6], mi[6], mrs[6], mis[6], mb[6], curiter[6],
298 xprop[7], yprop[7], xsprop[7], ysprop[7], mr[7], mi[7], mrs[7], mis[7], mb[7], curiter[7]);
300 xprop[7], yprop[7], xsprop[7], ysprop[7], mr[7], mi[7], mrs[7], mis[7], mb[7], curiter[7],
301 xprop[8], yprop[8], xsprop[8], ysprop[8], mr[8], mi[8], mrs[8], mis[8], mb[8], curiter[8]);
303 xprop[8], yprop[8], xsprop[8], ysprop[8], mr[8], mi[8], mrs[8], mis[8], mb[8], curiter[8],
304 xprop[9], yprop[9], xsprop[9], ysprop[9], mr[9], mi[9], mrs[9], mis[9], mb[9], curiter[9]);
312 output wire [2:0] red, green, output wire [1:0] blue);
314 reg [1:0] logo[8191:0];
315 initial $readmemb("logo.readmemb", logo);
317 assign enb = (x < 96) && (y < 64);
318 wire [12:0] addr = {y[5:0], x[6:0]};
319 wire [1:0] data = logo[addr];
320 assign {red, green, blue} =
321 (data == 2'b00) ? 8'b00000000 :
322 ((data == 2'b01) ? 8'b00011100 :
323 ((data == 2'b10) ? 8'b11100000 :
328 input gclk, output wire dcmok,
330 output wire [2:0] red, green, output [1:0] blue,
331 input left, right, up, down, rst, cycle, logooff,
336 wire [7:0] zero = 8'b0;
339 reg [13:0] xofs = -`XRES/2, yofs = -`YRES/2;
340 reg [5:0] slowctr = 0;
341 reg [7:0] colorcycle = 0;
342 wire [11:0] realx, realy;
345 wire [2:0] mandelr, mandelg, logor, logog;
346 wire [1:0] mandelb, logob;
348 pixDCM dcm( // CLKIN is 50MHz xtal, CLKFX_OUT is 25MHz
351 .CLKIN_IBUFG_OUT(clk),
355 SyncGen sync(pixclk, vs, hs, x, y, realx, realy, border);
356 Mandelbrot mandel(clk, pixclk, x, y, xofs, yofs, cycle ? colorcycle : 0, scale, mandelr, mandelg, mandelb);
357 Logo logo(pixclk, realx, realy, logoenb, logor, logog, logob);
359 assign {red,green,blue} =
360 border ? 8'b00000000 :
361 (!logooff && logoenb) ? {logor, logog, logob} : {mandelr, mandelg, mandelb};
371 if (up) yofs <= yofs + 1;
372 else if (down) yofs <= yofs - 1;
374 if (left) xofs <= xofs + 1;
375 else if (right) xofs <= xofs - 1;
378 colorcycle <= colorcycle + 1;
384 slowctr <= slowctr + 1;