3 * by Joshua Wise and Chris Lu
5 * An implementation of a pipelined algorithm to calculate the Mandelbrot set
6 * in real time on an FPGA.
16 output reg [11:0] xout = `WHIRRRRR, yout = 0,
17 output wire [11:0] xoutreal, youtreal,
20 reg [11:0] x = 0, y = 0; // Used for generating border and timing.
24 parameter XFPORCH = 16;
26 parameter XBPORCH = 48;
28 parameter YFPORCH = 10;
30 parameter YBPORCH = 29;
32 always @(posedge pixclk)
34 if (x >= (`XRES + XFPORCH + XSYNC + XBPORCH))
36 if (y >= (`YRES + YFPORCH + YSYNC + YBPORCH))
44 if (xout >= (`XRES + XFPORCH + XSYNC + XBPORCH))
46 if (yout >= (`YRES + YFPORCH + YSYNC + YBPORCH))
53 hs <= (x >= (`XRES + XFPORCH)) && (x < (`XRES + XFPORCH + XSYNC));
54 vs <= (y >= (`YRES + YFPORCH)) && (y < (`YRES + YFPORCH + YSYNC));
55 border <= (x > `XRES) || (y > `YRES);
61 module NaiveMultiplier(
65 output reg [12:0] out,
67 output reg [1:0] ovf);
72 (((y[12] ? (x ) : 0) +
73 (y[11] ? (x >> 1) : 0) +
74 (y[10] ? (x >> 2) : 0) +
75 (y[9] ? (x >> 3) : 0)) +
76 ((y[8] ? (x >> 4) : 0) +
77 (y[7] ? (x >> 5) : 0) +
78 (y[6] ? (x >> 6) : 0)))+
79 (((y[5] ? (x >> 7) : 0) +
80 (y[4] ? (x >> 8) : 0) +
81 (y[3] ? (x >> 9) : 0)) +
82 ((y[2] ? (x >> 10): 0) +
83 (y[1] ? (x >> 11): 0) +
84 (y[0] ? (x >> 12): 0)));
85 sign <= xsign ^ ysign;
94 output wire [12:0] out,
96 output wire [1:0] overflow);
98 NaiveMultiplier nm(clk, x, y, xsign, ysign, out, sign, overflow);
108 input [7:0] ibail, icuriter,
109 output reg [12:0] xout, yout,
110 output reg xsout, ysout,
111 output reg [14:0] rout, iout,
112 output reg rsout, isout,
113 output reg [7:0] obail, ocuriter);
115 wire [14:0] r2, i2, ri, diff;
116 wire [15:0] twocdiff;
117 wire r2sign, i2sign, risign, dsign;
119 wire bigsum_ovf, rin_ovf, iin_ovf, throwaway;
124 reg [7:0] ibaild, curiterd;
128 Multiplier r2m(clk, r[12:0], r[12:0], rsign, rsign, r2[12:0], r2sign, r2[14:13]);
129 Multiplier i2m(clk, i[12:0], i[12:0], isign, isign, i2[12:0], i2sign, i2[14:13]);
130 Multiplier rim(clk, r[12:0], i[12:0], rsign, isign, ri[13:1], risign, {throwaway,ri[14]});
132 assign bigsum = r2 + i2;
133 assign bigsum_ovf = bigsum[16] | bigsum[15] | bigsum[14];
136 assign twocdiff = r2 - i2;
137 assign diff = twocdiff[15] ? -twocdiff : twocdiff;
138 assign dsign = twocdiff[15];
140 always @ (posedge clk)
151 curiterd <= icuriter;
155 if (xsd ^ dsign) begin
168 if (ysd ^ risign) begin
181 // If we haven't bailed out, and we meet any of the bailout conditions,
182 // bail out now. Otherwise, leave the bailout at whatever it was before.
183 if ((ibaild == 255) && (bigsum_ovf | rin_ovf | iin_ovf))
187 ocuriter <= curiterd + 8'b1;
196 input [13:0] xofs, yofs,
197 input [7:0] colorofs,
199 output reg [2:0] red, green, output reg [1:0] blue);
207 assign nx = x + xofs;
208 assign ny = y + yofs;
209 assign rx = (nx[13] ? -nx[12:0] : nx[12:0]) << scale;
210 assign rxsign = nx[13];
211 assign ry = (ny[13] ? -ny[12:0] : ny[12:0]) << scale;
212 assign rysign = ny[13];
215 wire [14:0] mr[`MAXOUTN:0], mi[`MAXOUTN:0];
216 wire mrs[`MAXOUTN:0], mis[`MAXOUTN:0];
217 wire [7:0] mb[`MAXOUTN:0];
218 wire [12:0] xprop[`MAXOUTN:0], yprop[`MAXOUTN:0];
219 wire xsprop[`MAXOUTN:0], ysprop[`MAXOUTN:0];
220 wire [7:0] curiter[`MAXOUTN:0];
222 wire [14:0] initx, inity, initr, initi;
223 wire [7:0] initci, initb;
224 wire initxs, initys, initrs, initis;
226 // Values after the number of iterations denoted by the subscript.
227 reg [14:0] stagex [2:1], stagey [2:1], stager [2:1], stagei [2:1];
228 reg [7:0] stageci [2:1], stageb [2:1];
229 reg stagexs [2:1], stageys [2:1], stagers [2:1], stageis [2:1];
231 reg [2:0] state = 3'b001; // One-hot encoded state.
233 assign initx = state[0] ? rx :
234 state[1] ? stagex[1] :
236 assign inity = state[0] ? ry :
237 state[1] ? stagey[1] :
239 assign initr = state[0] ? rx :
240 state[1] ? stager[1] :
242 assign initi = state[0] ? ry :
243 state[1] ? stagei[1] :
245 assign initxs = state[0] ? rxsign :
246 state[1] ? stagexs[1] :
248 assign initys = state[0] ? rysign :
249 state[1] ? stageys[1] :
251 assign initrs = state[0] ? rxsign :
252 state[1] ? stagers[1] :
254 assign initis = state[0] ? rysign :
255 state[1] ? stageis[1] :
257 assign initb = state[0] ? 8'b11111111 :
258 state[1] ? stageb[1] :
260 assign initci = state[0] ? 8'b00000000 :
261 state[1] ? stageci[1] :
266 // We detect when the state should be poked by a high negedge followed
267 // by a high posedge -- if tha thappens, then we're guaranteed that the
268 // state following the current state will be 100.
270 always @(negedge mclk)
273 always @(posedge mclk)
275 if (lastneg && pixclk) // If a pixclk has happened, the state should be reset.
277 else // Otherwise, just poke it forward.
278 state <= {state[1], state[0], state[2]};
280 // Data output handling
282 {red, green, blue} <= {out[0],out[3],out[6],out[1],out[4],out[7],out[2],out[5]};
285 out <= ~mb[`MAXOUTN] + colorofs;
288 if (state[0]) begin // PnR0 in, PnR2 out
289 stagex[2] <= xprop[`MAXOUTN];
290 stagey[2] <= yprop[`MAXOUTN];
291 stager[2] <= mr[`MAXOUTN];
292 stagei[2] <= mi[`MAXOUTN];
293 stagexs[2] <= xsprop[`MAXOUTN];
294 stageys[2] <= ysprop[`MAXOUTN];
295 stagers[2] <= mrs[`MAXOUTN];
296 stageis[2] <= mis[`MAXOUTN];
297 stageb[2] <= mb[`MAXOUTN];
298 stageci[2] <= curiter[`MAXOUTN];
301 if (state[2]) begin // PnR2 in, PnR1 out
302 stagex[1] <= xprop[`MAXOUTN];
303 stagey[1] <= yprop[`MAXOUTN];
304 stager[1] <= mr[`MAXOUTN];
305 stagei[1] <= mi[`MAXOUTN];
306 stagexs[1] <= xsprop[`MAXOUTN];
307 stageys[1] <= ysprop[`MAXOUTN];
308 stagers[1] <= mrs[`MAXOUTN];
309 stageis[1] <= mis[`MAXOUTN];
310 stageb[1] <= mb[`MAXOUTN];
311 stageci[1] <= curiter[`MAXOUTN];
317 initx, inity, initxs, initys,
318 initr, initi, initrs, initis,
320 xprop[0], yprop[0], xsprop[0], ysprop[0],
321 mr[0], mi[0], mrs[0], mis[0],
325 xprop[0], yprop[0], xsprop[0], ysprop[0], mr[0], mi[0], mrs[0], mis[0], mb[0], curiter[0],
326 xprop[1], yprop[1], xsprop[1], ysprop[1], mr[1], mi[1], mrs[1], mis[1], mb[1], curiter[1]);
328 xprop[1], yprop[1], xsprop[1], ysprop[1], mr[1], mi[1], mrs[1], mis[1], mb[1], curiter[1],
329 xprop[2], yprop[2], xsprop[2], ysprop[2], mr[2], mi[2], mrs[2], mis[2], mb[2], curiter[2]);
331 xprop[2], yprop[2], xsprop[2], ysprop[2], mr[2], mi[2], mrs[2], mis[2], mb[2], curiter[2],
332 xprop[3], yprop[3], xsprop[3], ysprop[3], mr[3], mi[3], mrs[3], mis[3], mb[3], curiter[3]);
334 xprop[3], yprop[3], xsprop[3], ysprop[3], mr[3], mi[3], mrs[3], mis[3], mb[3], curiter[3],
335 xprop[4], yprop[4], xsprop[4], ysprop[4], mr[4], mi[4], mrs[4], mis[4], mb[4], curiter[4]);
337 xprop[4], yprop[4], xsprop[4], ysprop[4], mr[4], mi[4], mrs[4], mis[4], mb[4], curiter[4],
338 xprop[5], yprop[5], xsprop[5], ysprop[5], mr[5], mi[5], mrs[5], mis[5], mb[5], curiter[5]);
340 xprop[5], yprop[5], xsprop[5], ysprop[5], mr[5], mi[5], mrs[5], mis[5], mb[5], curiter[5],
341 xprop[6], yprop[6], xsprop[6], ysprop[6], mr[6], mi[6], mrs[6], mis[6], mb[6], curiter[6]);
343 xprop[6], yprop[6], xsprop[6], ysprop[6], mr[6], mi[6], mrs[6], mis[6], mb[6], curiter[6],
344 xprop[7], yprop[7], xsprop[7], ysprop[7], mr[7], mi[7], mrs[7], mis[7], mb[7], curiter[7]);
346 xprop[7], yprop[7], xsprop[7], ysprop[7], mr[7], mi[7], mrs[7], mis[7], mb[7], curiter[7],
347 xprop[8], yprop[8], xsprop[8], ysprop[8], mr[8], mi[8], mrs[8], mis[8], mb[8], curiter[8]);
349 xprop[8], yprop[8], xsprop[8], ysprop[8], mr[8], mi[8], mrs[8], mis[8], mb[8], curiter[8],
350 xprop[9], yprop[9], xsprop[9], ysprop[9], mr[9], mi[9], mrs[9], mis[9], mb[9], curiter[9]);
352 xprop[9], yprop[9], xsprop[9], ysprop[9], mr[9], mi[9], mrs[9], mis[9], mb[9], curiter[9],
353 xprop[10], yprop[10], xsprop[10], ysprop[10], mr[10], mi[10], mrs[10], mis[10], mb[10], curiter[10]);
355 xprop[10], yprop[10], xsprop[10], ysprop[10], mr[10], mi[10], mrs[10], mis[10], mb[10], curiter[10],
356 xprop[11], yprop[11], xsprop[11], ysprop[11], mr[11], mi[11], mrs[11], mis[11], mb[11], curiter[11]);
364 output wire [2:0] red, green, output wire [1:0] blue);
366 reg [1:0] logo[8191:0];
367 initial $readmemb("logo.readmemb", logo);
369 assign enb = (x < 96) && (y < 64);
370 wire [12:0] addr = {y[5:0], x[6:0]};
371 wire [1:0] data = logo[addr];
372 assign {red, green, blue} =
373 (data == 2'b00) ? 8'b00000000 :
374 ((data == 2'b01) ? 8'b00011100 :
375 ((data == 2'b10) ? 8'b11100000 :
380 input gclk, output wire dcmok,
382 output wire [2:0] red, green, output [1:0] blue,
383 input left, right, up, down, rst, cycle, logooff,
387 wire pixclk, mclk, gclk2, clk;
389 //assign dcmok = dcm1ok && dcm2ok;
391 //IBUFG typeA(.O(clk), .I(gclk));
393 //pixDCM dcm( // CLKIN is 50MHz xtal, CLKFX_OUT is 25MHz
395 // .CLKFX_OUT(pixclk),
396 // .LOCKED_OUT(dcm1ok)
402 // .LOCKED_OUT(dcm2ok)
407 .U1_CLKDV_OUT(pixclk),
409 .U2_LOCKED_OUT(dcmok)
414 reg [13:0] xofs = -`XRES/2, yofs = -`YRES/2;
415 reg [5:0] slowctr = 0;
416 reg [7:0] colorcycle = 0;
417 wire [11:0] realx, realy;
420 wire [2:0] mandelr, mandelg, logor, logog;
421 wire [1:0] mandelb, logob;
425 SyncGen sync(pixclk, vs, hs, x, y, realx, realy, border);
426 Mandelbrot mandel(mclk, pixclk, x, y, xofs, yofs, cycle ? colorcycle : 0, scale, mandelr, mandelg, mandelb);
427 Logo logo(pixclk, realx, realy, logoenb, logor, logog, logob);
429 assign {red,green,blue} =
430 border ? 8'b00000000 :
431 (!logooff && logoenb) ? {logor, logog, logob} : {mandelr, mandelg, mandelb};
441 if (up) yofs <= yofs + 1;
442 else if (down) yofs <= yofs - 1;
444 if (left) xofs <= xofs + 1;
445 else if (right) xofs <= xofs - 1;
448 colorcycle <= colorcycle + 1;
454 slowctr <= slowctr + 1;