3 * by Joshua Wise and Chris Lu
5 * An implementation of a pipelined algorithm to calculate the Mandelbrot set
6 * in real time on an FPGA.
16 output reg [11:0] xout = `WHIRRRRR, yout = 0,
17 output wire [11:0] xoutreal, youtreal,
20 reg [11:0] x = 0, y = 0; // Used for generating border and timing.
24 parameter XFPORCH = 16;
26 parameter XBPORCH = 48;
28 parameter YFPORCH = 10;
30 parameter YBPORCH = 29;
32 always @(posedge pixclk)
34 if (x >= (`XRES + XFPORCH + XSYNC + XBPORCH))
36 if (y >= (`YRES + YFPORCH + YSYNC + YBPORCH))
44 if (xout >= (`XRES + XFPORCH + XSYNC + XBPORCH))
46 if (yout >= (`YRES + YFPORCH + YSYNC + YBPORCH))
53 hs <= (x >= (`XRES + XFPORCH)) && (x < (`XRES + XFPORCH + XSYNC));
54 vs <= (y >= (`YRES + YFPORCH)) && (y < (`YRES + YFPORCH + YSYNC));
55 border <= (x > `XRES) || (y > `YRES);
61 module NaiveMultiplier(
65 output reg [12:0] out,
72 (((y[12] ? (x ) : 0) +
73 (y[11] ? (x >> 1) : 0) +
74 (y[10] ? (x >> 2) : 0)) +
75 (((y[9] ? (x >> 3) : 0) +
76 (y[8] ? (x >> 4) : 0)) +
77 ((y[7] ? (x >> 5) : 0) +
78 (y[6] ? (x >> 6) : 0))))+
79 (((y[5] ? (x >> 7) : 0) +
80 (y[4] ? (x >> 8) : 0) +
81 (y[3] ? (x >> 9) : 0)) +
82 ((y[2] ? (x >> 10): 0) +
83 (y[1] ? (x >> 11): 0) +
84 (y[0] ? (x >> 12): 0)));
85 sign <= xsign ^ ysign;
94 output wire [12:0] out,
96 output wire overflow);
98 NaiveMultiplier nm(clk, x, y, xsign, ysign, out, sign, overflow);
109 input [7:0] ibail, icuriter,
110 output reg [12:0] xout, yout,
111 output reg xsout, ysout,
112 output reg [14:0] rout, iout,
113 output reg rsout, isout,
114 output reg [7:0] obail, ocuriter);
117 wire [14:0] ri, diff;
118 wire [15:0] twocdiff;
119 wire r2sign, i2sign, risign, dsign;
126 reg [7:0] ibaild, curiterd;
130 Multiplier r2m(clk, r[12:0], r[12:0], rsign, rsign, r2[12:0], r2sign, r2[13]);
131 Multiplier i2m(clk, i[12:0], i[12:0], isign, isign, i2[12:0], i2sign, i2[13]);
132 Multiplier rim(clk, r[12:0], i[12:0], rsign, isign, ri[13:1], risign, ri[14]);
134 assign bigsum = r2[13:0] + i2[13:0];
135 wire shnasto = bigsum[14];
136 wire shnasto2 = // o shi
162 ))))))))))))))))))))))));
163 assign bigsum_ovf = shnasto | r2[13] | i2[13];
165 assign twocdiff = r2 - i2;
166 assign diff = twocdiff[15] ? -twocdiff : twocdiff;
167 assign dsign = twocdiff[15];
169 wire [15:0] twocrout = xd - diff;
170 wire [15:0] twociout = yd - ri;
172 always @ (posedge clk)
183 curiterd <= icuriter;
184 ineedbaild <= r[13] | r[14] | i[13] | i[14];
187 if (xsd ^ dsign) begin
188 if (twocrout[15]) begin // diff > xd
197 rsout <= xsd; // xsd == dsign
201 if (ysd ^ risign) begin
202 if (twociout[15]) begin // ri > yd
214 // If we haven't bailed out, and we meet any of the bailout conditions,
215 // bail out now. Otherwise, leave the bailout at whatever it was before.
216 if ((ibaild == 255) && (bigsum_ovf | ineedbaild))
220 ocuriter <= curiterd + 8'b1;
229 input [13:0] xofs, yofs,
230 input [7:0] colorofs,
232 output reg [2:0] red, green, output reg [1:0] blue);
240 assign nx = x + xofs;
241 assign ny = y + yofs;
242 assign rx = (nx[13] ? -nx[12:0] : nx[12:0]) << scale;
243 assign rxsign = nx[13];
244 assign ry = (ny[13] ? -ny[12:0] : ny[12:0]) << scale;
245 assign rysign = ny[13];
247 wire [14:0] mr[`MAXOUTN:0], mi[`MAXOUTN:0];
248 wire mrs[`MAXOUTN:0], mis[`MAXOUTN:0];
249 wire [7:0] mb[`MAXOUTN:0];
250 wire [12:0] xprop[`MAXOUTN:0], yprop[`MAXOUTN:0];
251 wire xsprop[`MAXOUTN:0], ysprop[`MAXOUTN:0];
252 wire [7:0] curiter[`MAXOUTN:0];
254 reg [14:0] initx, inity, initr, initi;
255 reg [7:0] initci, initb;
256 reg initxs, initys, initrs, initis;
258 // Values after the number of iterations denoted by the subscript.
259 reg [14:0] stagex [2:1], stagey [2:1], stager [2:1], stagei [2:1];
260 reg [7:0] stageci [2:1], stageb [2:1];
261 reg stagexs [2:1], stageys [2:1], stagers [2:1], stageis [2:1];
263 reg [2:0] state = 3'b001; // One-hot encoded state.
265 // States are advanced one from what they should be, so that they'll
266 // get there on the _next_ mclk.
267 always @(posedge mclk)
269 initx <= (state[2]) ? rx :
270 (state[0]) ? stagex[1] :
271 (state[1]) ? stagex[2] : 0;
272 inity <= (state[2]) ? ry :
273 (state[0]) ? stagey[1] :
274 (state[1]) ? stagey[2] : 0;
275 initr <= (state[2]) ? rx :
276 (state[0]) ? stager[1] :
277 (state[1]) ? stager[2] : 0;
278 initi <= (state[2]) ? ry :
279 (state[0]) ? stagei[1] :
280 (state[1]) ? stagei[2] : 0;
281 initxs <= (state[2]) ? rxsign :
282 (state[0]) ? stagexs[1] :
283 (state[1]) ? stagexs[2] : 0;
284 initys <= (state[2]) ? rysign :
285 (state[0]) ? stageys[1] :
286 (state[1]) ? stageys[2] : 0;
287 initrs <= (state[2]) ? rxsign :
288 (state[0]) ? stagers[1] :
289 (state[1]) ? stagers[2] : 0;
290 initis <= (state[2]) ? rysign :
291 (state[0]) ? stageis[1] :
292 (state[1]) ? stageis[2] : 0;
293 initb <= (state[2]) ? 8'b11111111 :
294 (state[0]) ? stageb[1] :
295 (state[1]) ? stageb[2] : 0;
296 initci <= (state[2]) ? 8'b00000000 :
297 (state[0]) ? stageci[1] :
298 (state[1]) ? stageci[2] : 0;
303 // We detect when the state should be poked by a high negedge followed
304 // by a high posedge -- if that happens, then we're guaranteed that the
305 // state following the current state will be 3'b100.
307 always @(negedge mclk)
310 always @(posedge mclk)
312 if (lastneg && pixclk) // If a pixclk has happened, the state should be reset.
314 else // Otherwise, just poke it forward.
316 3'b001: state <= 3'b010;
317 3'b010: state <= 3'b100;
318 3'b100: state <= 3'b001;
321 // Data output handling
323 {red, green, blue} <= {out[0],out[3],out[6],out[1],out[4],out[7],out[2],out[5]};
326 out <= ~mb[`MAXOUTN] + colorofs;
329 if (state[0]) begin // PnR0 in, PnR2 out
330 stagex[2] <= xprop[`MAXOUTN];
331 stagey[2] <= yprop[`MAXOUTN];
332 stager[2] <= mr[`MAXOUTN];
333 stagei[2] <= mi[`MAXOUTN];
334 stagexs[2] <= xsprop[`MAXOUTN];
335 stageys[2] <= ysprop[`MAXOUTN];
336 stagers[2] <= mrs[`MAXOUTN];
337 stageis[2] <= mis[`MAXOUTN];
338 stageb[2] <= mb[`MAXOUTN];
339 stageci[2] <= curiter[`MAXOUTN];
342 if (state[2]) begin // PnR2 in, PnR1 out
343 stagex[1] <= xprop[`MAXOUTN];
344 stagey[1] <= yprop[`MAXOUTN];
345 stager[1] <= mr[`MAXOUTN];
346 stagei[1] <= mi[`MAXOUTN];
347 stagexs[1] <= xsprop[`MAXOUTN];
348 stageys[1] <= ysprop[`MAXOUTN];
349 stagers[1] <= mrs[`MAXOUTN];
350 stageis[1] <= mis[`MAXOUTN];
351 stageb[1] <= mb[`MAXOUTN];
352 stageci[1] <= curiter[`MAXOUTN];
358 initx, inity, initxs, initys,
359 initr, initi, initrs, initis,
361 xprop[0], yprop[0], xsprop[0], ysprop[0],
362 mr[0], mi[0], mrs[0], mis[0],
365 `define MAKE_UNIT(name, num) \
366 MandelUnit name(mclk, \
367 xprop[(num)], yprop[(num)], xsprop[(num)], ysprop[(num)], mr[(num)], mi[(num)], mrs[(num)], mis[(num)], mb[(num)], curiter[(num)], \
368 xprop[(num)+1], yprop[(num)+1], xsprop[(num)+1], ysprop[(num)+1], mr[(num)+1], mi[(num)+1], mrs[(num)+1], mis[(num)+1], mb[(num)+1], curiter[(num)+1])
387 output wire [2:0] red, green, output wire [1:0] blue);
389 reg [1:0] logo[8191:0];
390 initial $readmemb("logo.readmemb", logo);
392 assign enb = (x < 96) && (y < 64);
393 wire [12:0] addr = {y[5:0], x[6:0]};
394 wire [1:0] data = logo[addr];
395 assign {red, green, blue} =
396 (data == 2'b00) ? 8'b00000000 :
397 ((data == 2'b01) ? 8'b00011100 :
398 ((data == 2'b10) ? 8'b11100000 :
403 input gclk, output wire dcmok,
405 output wire [2:0] red, green, output [1:0] blue,
406 input left, right, up, down, rst, cycle, logooff,
409 wire pixclk, mclk, clk;
411 assign dcmok = dcm1ok && dcm2ok;
413 IBUFG iclkbuf(.O(clk), .I(gclk));
415 pixDCM dcm( // CLKIN is 50MHz xtal, CLKFX_OUT is 25MHz
429 reg [13:0] xofs = -`XRES/2, yofs = -`YRES/2;
430 reg [5:0] slowctr = 0;
431 reg [7:0] colorcycle = 0;
432 wire [11:0] realx, realy;
435 wire [2:0] mandelr, mandelg, logor, logog;
436 wire [1:0] mandelb, logob;
438 SyncGen sync(pixclk, vs, hs, x, y, realx, realy, border);
439 Mandelbrot mandel(mclk, pixclk, x, y, xofs, yofs, cycle ? colorcycle : 0, scale, mandelr, mandelg, mandelb);
440 Logo logo(pixclk, realx, realy, logoenb, logor, logog, logob);
442 assign {red,green,blue} =
443 border ? 8'b00000000 :
444 (!logooff && logoenb) ? {logor, logog, logob} : {mandelr, mandelg, mandelb};
454 if (up) yofs <= yofs + 1;
455 else if (down) yofs <= yofs - 1;
457 if (left) xofs <= xofs + 1;
458 else if (right) xofs <= xofs - 1;
461 colorcycle <= colorcycle + 1;
467 slowctr <= slowctr + 1;