14 `define _A registers[`REG_A]
15 `define _B registers[`REG_B]
16 `define _C registers[`REG_C]
17 `define _D registers[`REG_D]
18 `define _E registers[`REG_E]
19 `define _F registers[`REG_F]
20 `define _H registers[`REG_H]
21 `define _L registers[`REG_L]
22 `define _SPH registers[`REG_SPH]
23 `define _SPL registers[`REG_SPL]
24 `define _PCH registers[`REG_PCH]
25 `define _PCL registers[`REG_PCL]
26 `define _AF {`_A, `_F}
27 `define _BC {`_B, `_C}
28 `define _DE {`_D, `_E}
29 `define _HL {`_H, `_L}
30 `define _SP {`_SPH, `_SPL}
31 `define _PC {`_PCH, `_PCL}
33 `define FLAG_Z 8'b10000000
34 `define FLAG_N 8'b01000000
35 `define FLAG_H 8'b00100000
36 `define FLAG_C 8'b00010000
38 `define STATE_FETCH 2'h0
39 `define STATE_DECODE 2'h1
40 `define STATE_EXECUTE 2'h2
41 `define STATE_WRITEBACK 2'h3
43 `define INSN_LD_reg_imm8 9'b000xxx110
44 `define INSN_HALT 9'b001110110
45 `define INSN_LD_HL_reg 9'b001110xxx
46 `define INSN_LD_reg_HL 9'b001xxx110
47 `define INSN_LD_reg_reg 9'b001xxxxxx
48 `define INSN_LD_reg_imm16 9'b000xx0001
49 `define INSN_LD_SP_HL 9'b011111001
50 `define INSN_PUSH_reg 9'b011xx0101
51 `define INSN_POP_reg 9'b011xx0001
52 `define INSN_LDH_AC 9'b0111x0010 // Either LDH A,(C) or LDH (C),A
53 `define INSN_LDx_AHL 9'b0001xx010 // LDD/LDI A,(HL) / (HL),A
54 `define INSN_ALU8 9'b010xxxxxx // 10 xxx yyy
55 `define INSN_ALU8IMM 9'b011xxx110
56 `define INSN_NOP 9'b000000000
57 `define INSN_RST 9'b011xxx111
58 `define INSN_RET 9'b0110x1001 // 1 = RETI, 0 = RET
59 `define INSN_RETCC 9'b0110xx000
60 `define INSN_CALL 9'b011001101
61 `define INSN_CALLCC 9'b0110xx100 // Not that call/cc.
62 `define INSN_JP_imm 9'b011000011
63 `define INSN_JPCC_imm 9'b0110xx010
64 `define INSN_ALU_A 9'b000xxx111
65 `define INSN_JP_HL 9'b011101001
66 `define INSN_JR_imm 9'b000011000
67 `define INSN_JRCC_imm 9'b0001xx000
68 `define INSN_INCDEC16 9'b000xxx011
69 `define INSN_VOP_INTR 9'b011111100 // 0xFC is grabbed by the fetch if there is an interrupt pending.
70 `define INSN_DI 9'b011110011
71 `define INSN_EI 9'b011111011
72 `define INSN_INCDEC_HL 9'b00011010x
73 `define INSN_INCDEC_reg8 9'b000xxx10x
74 `define INSN_LD8M_A 9'b0111x0000 // 1111 for ld A, x; 1110 for ld x, A; bit 1 specifies 16m8 or 8m8
75 `define INSN_LD16M_A 9'b0111x1010 // 1111 for ld A, x; 1110 for ld x, A; bit 1 specifies 16m8 or 8m8
76 `define INSN_LDBCDE_A 9'b0000xx010
77 `define INSN_TWO_BYTE 9'b011001011 // prefix for two-byte opqodes
78 `define INSN_ALU_EXT 9'b100xxxxxx
79 `define INSN_BIT 9'b101xxxxxx
80 `define INSN_RES 9'b110xxxxxx
81 `define INSN_SET 9'b111xxxxxx
82 `define INSN_ADD_HL 9'b000xx1001
84 `define INSN_cc_NZ 2'b00
85 `define INSN_cc_Z 2'b01
86 `define INSN_cc_NC 2'b10
87 `define INSN_cc_C 2'b11
89 `define INSN_reg_A 3'b111
90 `define INSN_reg_B 3'b000
91 `define INSN_reg_C 3'b001
92 `define INSN_reg_D 3'b010
93 `define INSN_reg_E 3'b011
94 `define INSN_reg_H 3'b100
95 `define INSN_reg_L 3'b101
96 `define INSN_reg_dHL 3'b110
97 `define INSN_reg16_BC 2'b00
98 `define INSN_reg16_DE 2'b01
99 `define INSN_reg16_HL 2'b10
100 `define INSN_reg16_SP 2'b11
101 `define INSN_stack_AF 2'b11
102 `define INSN_stack_BC 2'b00
103 `define INSN_stack_DE 2'b01
104 `define INSN_stack_HL 2'b10
105 `define INSN_alu_ADD 3'b000
106 `define INSN_alu_ADC 3'b001
107 `define INSN_alu_SUB 3'b010
108 `define INSN_alu_SBC 3'b011
109 `define INSN_alu_AND 3'b100
110 `define INSN_alu_XOR 3'b101
111 `define INSN_alu_OR 3'b110
112 `define INSN_alu_CP 3'b111 // Oh lawd, is dat some CP?
113 `define INSN_alu_RLCA 3'b000
114 `define INSN_alu_RRCA 3'b001
115 `define INSN_alu_RLA 3'b010
116 `define INSN_alu_RRA 3'b011
117 `define INSN_alu_DAA 3'b100
118 `define INSN_alu_CPL 3'b101
119 `define INSN_alu_SCF 3'b110
120 `define INSN_alu_CCF 3'b111
121 `define INSN_alu_RLC 3'b000
122 `define INSN_alu_RRC 3'b001
123 `define INSN_alu_RL 3'b010
124 `define INSN_alu_RR 3'b011
125 `define INSN_alu_DA_SLA 3'b100
126 `define INSN_alu_CPL_SRA 3'b101
127 `define INSN_alu_SCF_SWAP 3'b110
128 `define INSN_alu_CCF_SRL 3'b111
130 `define EXEC_INC_PC `_PC <= `_PC + 1;
131 `define EXEC_NEXTADDR_PCINC address <= `_PC + 1;
132 `define EXEC_NEWCYCLE begin newcycle <= 1; rd <= 1; wr <= 0; end
133 `define EXEC_NEWCYCLE_TWOBYTE begin newcycle <= 1; rd <= 1; wr <= 0; twobyte <= 1; end
135 `define EXEC_WRITE(ad, da) begin address <= (ad); wdata <= (da); wr <= 1; end
136 `define EXEC_READ(ad) begin address <= (ad); rd <= 1; end
139 `define EXEC_WRITE(ad, da) begin address <= (ad); wdata <= (da); wr <= 1; end
140 `define EXEC_READ(ad) begin address <= (ad); rd <= 1; end
142 /* Work around XST's retarded bugs :\ */
143 `define EXEC_WRITE(ad, da) begin address <= (ad); wdata <= (da); wr <= 1; end end
144 `define EXEC_READ(ad) begin address <= (ad); rd <= 1; end end
150 inout [15:0] bus0address, /* BUS_* is latched on STATE_FETCH. */
151 inout [7:0] bus0data,
152 inout bus0wr, bus0rd,
153 inout [15:0] bus1address, /* BUS_* is latched on STATE_FETCH. */
154 inout [7:0] bus1data,
155 inout bus1wr, bus1rd,
156 input irq, output reg irqack, input [7:0] jaddr,
157 output reg [1:0] state);
159 // reg [1:0] state; /* State within this bus cycle (see STATE_*). */
160 reg [2:0] cycle; /* Cycle for instructions. */
162 reg [7:0] registers[11:0];
164 reg [15:0] address; /* Address for the next bus operation. */
166 reg [8:0] opcode; /* Opcode from the current machine cycle. */
168 reg [7:0] rdata, wdata; /* Read data from this bus cycle, or write data for the next. */
169 reg rd, wr, newcycle, twobyte;
171 reg [7:0] tmp, tmp2; /* Generic temporary regs. */
176 reg [15:0] busaddress;
181 wire bus = ((busaddress[15:8] == 8'h00) && bootstrap_enb) || ((busaddress[15:7] == 9'b111111111) && (busaddress != 16'hFFFF)) /* 0 or 1 depending on which bus */
183 || (busaddress === 16'hxxxx) /* To avoid simulator glomulation. */
187 assign bus0address = (bus == 0) ? busaddress : 16'bzzzzzzzzzzzzzzz;
188 assign bus1address = (bus == 1) ? busaddress : 16'bzzzzzzzzzzzzzzz;
189 assign bus0data = ((bus == 0) && buswr) ? buswdata : 8'bzzzzzzzz;
190 assign bus1data = ((bus == 1) && buswr) ? buswdata : 8'bzzzzzzzz;
191 assign busdata = (bus == 0) ? bus0data : bus1data;
192 assign bus0rd = (bus == 0) ? busrd : 1'b0;
193 assign bus1rd = (bus == 1) ? busrd : 1'b0;
194 assign bus0wr = (bus == 0) ? buswr : 1'b0;
195 assign bus1wr = (bus == 1) ? buswr : 1'b0;
199 wire [7:0] rlc,rrc,rl,rr,sla,sra,swap,srl;
200 wire [3:0] rlcf,rrcf,rlf,rrf,slaf,sraf,swapf,srlf;
204 assign rlc = {tmp[6:0],tmp[7]};
205 assign rlcf = {(tmp == 0 ? 1'b1 : 1'b0)
209 assign rrc = {tmp[0],tmp[7:1]};
210 assign rrcf = {(tmp == 0 ? 1'b1 : 1'b0),
214 assign rl = {tmp[6:0],`_F[4]};
215 assign rlf = {({tmp[6:0],`_F[4]} == 0 ? 1'b1 : 1'b0),
219 assign rr = {`_F[4],tmp[7:1]};
220 assign rrf = {({tmp[4],tmp[7:1]} == 0 ? 1'b1 : 1'b0),
224 assign sla = {tmp[6:0],1'b0};
225 assign slaf = {(tmp[6:0] == 0 ? 1'b1 : 1'b0),
229 assign sra = {tmp[7],tmp[7:1]};
230 // assign sraf = {(tmp[7:1] == 0 ? 1'b1 : 1'b0),2'b0,tmp[0]}; now in assign srlf =
232 assign swap = {tmp[3:0],tmp[7:4]};
233 assign swapf = {(tmp == 1'b0 ? 1'b1 : 1'b0),
236 assign srl = {1'b0,tmp[7:1]};
237 assign srlf = {(tmp[7:1] == 0 ? 1'b1 : 1'b0),
243 assign {alu_res,f_res} =
246 opcode[3] ? {srl,srlf} : {swap,swapf}
248 opcode[3] ? {sra,sraf} : {sla,slaf}
252 opcode[3] ? {rr,rrf} : {rl,rlf}
254 opcode[3] ? {rrc,rrcf} : {rlc,rlcf}
282 state <= `STATE_WRITEBACK;
289 always @(negedge clk) /* Set things up at the negedge to prepare for the posedge. */
297 busaddress <= address;
302 if (address == 16'hFF50)
307 `STATE_DECODE: begin /* Make sure this only happens for one clock. */
313 always @(posedge clk)
316 /* Things are set up in negedge so that something looking on posedge will get his shit. */
317 state <= `STATE_DECODE;
322 opcode <= {1'b1,busdata};
324 end else if (ie && irq)
325 opcode <= `INSN_VOP_INTR;
327 opcode <= {1'b0,busdata};
332 if (rd) rdata <= busdata; /* Still valid because peripherals are now expected to keep it held valid. */
341 address <= 16'bxxxxxxxxxxxxxxxx; // Make it obvious if something of type has happened.
342 wdata <= 8'bxxxxxxxx;
343 state <= `STATE_EXECUTE;
345 `STATE_EXECUTE: begin
347 if (opcode[7:0] === 8'bxxxxxxxx)
352 `include "allinsns.v"
357 state <= `STATE_WRITEBACK;
359 `STATE_WRITEBACK: begin
362 `include "allinsns.v"
367 state <= `STATE_FETCH;