3 input Nrst, /* XXX not used yet */
18 output reg outstall = 0,
19 output reg outbubble = 1,
20 output reg [31:0] outcpsr = 0,
21 output reg [31:0] outspsr = 0,
22 output reg write_reg = 1'bx,
23 output reg [3:0] write_num = 4'bxxxx,
24 output reg [31:0] write_data = 32'hxxxxxxxx,
25 output reg [31:0] jmppc,
27 output reg [31:0] outpc,
28 output reg [31:0] outinsn,
29 output reg [31:0] outop0, outop1, outop2
33 reg [31:0] mult_acc0, mult_in0, mult_in1;
35 wire [31:0] mult_result;
37 reg [31:0] alu_in0, alu_in1;
40 wire [31:0] alu_result, alu_outcpsr;
44 reg [31:0] next_outcpsr, next_outspsr;
46 reg [3:0] next_write_num;
48 reg [31:0] next_write_data;
50 Multiplier multiplier(
51 .clk(clk), .Nrst(Nrst),
52 .start(mult_start), .acc0(mult_acc0), .in0(mult_in0),
53 .in1(mult_in1), .done(mult_done), .result(mult_result));
56 .clk(clk), .Nrst(Nrst),
57 .in0(alu_in0), .in1(alu_in1), .cpsr(cpsr), .op(alu_op),
58 .setflags(alu_setflags), .shifter_carry(carry),
59 .result(alu_result), .cpsr_out(alu_outcpsr), .setres(alu_setres));
65 outbubble <= next_outbubble;
66 outcpsr <= next_outcpsr;
67 outspsr <= next_outspsr;
68 write_reg <= next_write_reg;
69 write_num <= next_write_num;
70 write_data <= next_write_data;
81 prevstall <= outstall;
86 next_outbubble = inbubble | flush;
90 next_write_num = 4'hx;
91 next_write_data = 32'hxxxxxxxx;
94 mult_acc0 = 32'hxxxxxxxx;
95 mult_in0 = 32'hxxxxxxxx;
96 mult_in1 = 32'hxxxxxxxx;
98 alu_in0 = 32'hxxxxxxxx;
99 alu_in1 = 32'hxxxxxxxx;
100 alu_op = 4'hx; /* hax! */
104 jmppc = 32'h00000000;
107 `DECODE_ALU_MULT: /* Multiply -- must come before ALU, because it pattern matches a specific case of ALU */
109 if (!prevstall && !inbubble)
112 mult_acc0 = insn[21] /* A */ ? op0 /* Rn */ : 32'h0;
113 mult_in0 = op1 /* Rm */;
114 mult_in1 = op2 /* Rs */;
115 $display("New MUL instruction");
117 outstall = stall | ((!prevstall | !mult_done) && !inbubble);
118 next_outbubble = inbubble | !mult_done | !prevstall;
119 next_outcpsr = insn[20] /* S */ ? {mult_result[31] /* N */, mult_result == 0 /* Z */, 1'b0 /* C */, cpsr[28] /* V */, cpsr[27:0]} : cpsr;
121 next_write_num = insn[19:16] /* Rd -- why the fuck isn't this the same place as ALU */;
122 next_write_data = mult_result;
124 // `DECODE_ALU_MUL_LONG, /* Multiply long */
125 `DECODE_ALU_MRS: /* MRS (Transfer PSR to register) */
128 next_write_num = insn[15:12];
129 if (insn[22] /* Ps */)
130 next_write_data = spsr;
132 next_write_data = cpsr;
134 `DECODE_ALU_MSR, /* MSR (Transfer register to PSR) */
135 `DECODE_ALU_MSR_FLAGS: /* MSR (Transfer register or immediate to PSR, flag bits only) */
136 if ((cpsr[4:0] == `MODE_USR) || (insn[16] /* that random bit */ == 1'b0)) /* flags only */
138 if (insn[22] /* Ps */)
139 next_outspsr = {op0[31:29], spsr[28:0]};
141 next_outcpsr = {op0[31:29], cpsr[28:0]};
143 if (insn[22] /* Ps */)
148 `DECODE_ALU_SWP, /* Atomic swap */
149 `DECODE_ALU_BX, /* Branch */
150 `DECODE_ALU_HDATA_REG, /* Halfword transfer - register offset */
151 `DECODE_ALU_HDATA_IMM: /* Halfword transfer - immediate offset */
153 `DECODE_ALU: /* ALU */
157 alu_op = insn[24:21];
158 alu_setflags = insn[20] /* S */;
160 if (alu_setres) begin
162 next_write_num = insn[15:12] /* Rd */;
163 next_write_data = alu_result;
166 next_outcpsr = ((insn[15:12] == 4'b1111) && insn[20]) ? spsr : alu_outcpsr;
168 `DECODE_LDRSTR_UNDEFINED, /* Undefined. I hate ARM */
169 `DECODE_LDRSTR, /* Single data transfer */
170 `DECODE_LDMSTM: /* Block data transfer */
175 jmppc = pc + op0 + 32'h8;
178 next_write_num = 4'hE; /* link register */
179 next_write_data = pc - 32'h4;
184 `DECODE_LDCSTC, /* Coprocessor data transfer */
185 `DECODE_CDP, /* Coprocessor data op */
186 `DECODE_MRCMCR, /* Coprocessor register transfer */
187 `DECODE_SWI: /* SWI */
189 default: /* X everything else out */
197 input Nrst, /* XXX not used yet */
205 output reg [31:0] result);
208 reg [31:0] multiplicand;
211 always @(posedge clk)
219 bitfield <= {2'b00, bitfield[31:2]};
220 multiplicand <= {multiplicand[29:0], 2'b00};
222 (bitfield[0] ? multiplicand : 0) +
223 (bitfield[1] ? {multiplicand[30:0], 1'b0} : 0);
224 if (bitfield == 0) begin
234 input Nrst, /* XXX not used yet */
243 output reg [31:0] result,
244 output reg [31:0] cpsr_out,
248 reg flag_n, flag_z, flag_c, flag_v;
249 wire [32:0] sum, diff, rdiff;
250 wire sum_v, diff_v, rdiff_v;
252 assign sum = {1'b0, in0} + {1'b0, in1};
253 assign diff = {1'b0, in0} - {1'b0, in1};
254 assign rdiff = {1'b0, in1} + {1'b0, in0};
255 assign sum_v = (in0[31] ^~ in1[31]) & (sum[31] ^ in0[31]);
256 assign diff_v = (in0[31] ^ in1[31]) & (diff[31] ^ in0[31]);
257 assign rdiff_v = (in0[31] ^ in1[31]) & (rdiff[31] ^ in1[31]);
262 flag_c = cpsr[`CPSR_C];
263 flag_v = cpsr[`CPSR_V];
267 flag_c = shifter_carry;
272 flag_c = shifter_carry;
276 {flag_c, result} = diff;
281 {flag_c, result} = rdiff;
286 {flag_c, result} = sum;
291 {flag_c, result} = sum + {32'b0, cpsr[`CPSR_C]};
292 flag_v = sum_v | (~sum[31] & result[31]);
296 {flag_c, result} = diff - {32'b0, (~cpsr[`CPSR_C])};
297 flag_v = diff_v | (diff[31] & ~result[31]);
301 {flag_c, result} = rdiff - {32'b0, (~cpsr[`CPSR_C])};
302 flag_v = rdiff_v | (rdiff[31] & ~result[31]);
307 flag_c = shifter_carry;
312 flag_c = shifter_carry;
316 {flag_c, result} = diff;
321 {flag_c, result} = sum;
327 flag_c = shifter_carry;
332 flag_c = shifter_carry;
336 result = in0 & (~in1);
337 flag_c = shifter_carry;
342 flag_c = shifter_carry;
347 flag_z = (result == 0);
350 cpsr_out = setflags ? {flag_n, flag_z, flag_c, flag_v, cpsr[27:0]} : cpsr;