3         input Nrst,     /* XXX not used yet */
 
  18         output reg outstall = 0,
 
  19         output reg outbubble = 1,
 
  20         output reg [31:0] outcpsr = 0,
 
  21         output reg [31:0] outspsr = 0,
 
  22         output reg outcpsrup = 0,
 
  23         output reg write_reg = 1'bx,
 
  24         output reg [3:0] write_num = 4'bxxxx,
 
  25         output reg [31:0] write_data = 32'hxxxxxxxx,
 
  26         output reg [31:0] jmppc,
 
  28         output reg [31:0] outpc,
 
  29         output reg [31:0] outinsn,
 
  30         output reg [31:0] outop0, outop1, outop2
 
  34         reg [31:0] mult_acc0, mult_in0, mult_in1;
 
  36         wire [31:0] mult_result;
 
  38         reg [31:0] alu_in0, alu_in1;
 
  41         wire [31:0] alu_result, alu_outcpsr;
 
  45         reg [31:0] next_outcpsr, next_outspsr;
 
  48         reg [3:0] next_write_num;
 
  50         reg [31:0] next_write_data;
 
  52         Multiplier multiplier(
 
  53                 .clk(clk), .Nrst(Nrst),
 
  54                 .start(mult_start), .acc0(mult_acc0), .in0(mult_in0),
 
  55                 .in1(mult_in1), .done(mult_done), .result(mult_result));
 
  58                 .clk(clk), .Nrst(Nrst),
 
  59                 .in0(alu_in0), .in1(alu_in1), .cpsr(cpsr), .op(alu_op),
 
  60                 .setflags(alu_setflags), .shifter_carry(carry),
 
  61                 .result(alu_result), .cpsr_out(alu_outcpsr), .setres(alu_setres));
 
  67                         outbubble <= next_outbubble;
 
  68                         outcpsr <= next_outcpsr;
 
  69                         outspsr <= next_outspsr;
 
  70                         outcpsrup <= next_outcpsrup;
 
  71                         write_reg <= next_write_reg;
 
  72                         write_num <= next_write_num;
 
  73                         write_data <= next_write_data;
 
  84                 if (flush && outstall /* halp! I can't do it now, maybe later? */)
 
  86                 else if (!outstall /* anything has been handled this time around */)
 
  91                 prevstall <= outstall;
 
  98                 `DECODE_ALU_MULT:       /* Multiply -- must come before ALU, because it pattern matches a specific case of ALU */
 
  99                         outstall = outstall | ((!prevstall | !mult_done) && !inbubble);
 
 108                 alu_op = insn[24:21];
 
 109                 alu_setflags = insn[20] /* S */;
 
 112         /* Register outputs */
 
 119                 next_write_num = 4'hx;
 
 120                 next_write_data = 32'hxxxxxxxx;
 
 123                 `DECODE_ALU_MULT:       /* Multiply -- must come before ALU, because it pattern matches a specific case of ALU */
 
 125                         next_outcpsr = insn[20] /* S */ ? {mult_result[31] /* N */, mult_result == 0 /* Z */, 1'b0 /* C */, cpsr[28] /* V */, cpsr[27:0]} : cpsr;
 
 126                         next_outcpsrup = insn[20] /* S */;
 
 128                         next_write_num = insn[19:16] /* Rd -- why the fuck isn't this the same place as ALU */;
 
 129                         next_write_data = mult_result;
 
 131                 `DECODE_ALU_MRS:        /* MRS (Transfer PSR to register) */
 
 134                         next_write_num = insn[15:12];
 
 135                         if (insn[22] /* Ps */)
 
 136                                 next_write_data = spsr;
 
 138                                 next_write_data = cpsr;
 
 140                 `DECODE_ALU_MSR,        /* MSR (Transfer register to PSR) */
 
 141                 `DECODE_ALU_MSR_FLAGS:  /* MSR (Transfer register or immediate to PSR, flag bits only) */
 
 143                         if ((cpsr[4:0] == `MODE_USR) || (insn[16] /* that random bit */ == 1'b0))       /* flags only */
 
 145                                 if (insn[22] /* Ps */)
 
 146                                         next_outspsr = {op0[31:29], spsr[28:0]};
 
 148                                         next_outcpsr = {op0[31:29], cpsr[28:0]};
 
 150                                 if (insn[22] /* Ps */)
 
 157                 `DECODE_ALU_SWP,        /* Atomic swap */
 
 158                 `DECODE_ALU_BX,         /* Branch */
 
 159                 `DECODE_ALU_HDATA_REG,  /* Halfword transfer - register offset */
 
 160                 `DECODE_ALU_HDATA_IMM:  /* Halfword transfer - immediate offset */
 
 162                 `DECODE_ALU:            /* ALU */
 
 164                         if (alu_setres) begin
 
 166                                 next_write_num = insn[15:12] /* Rd */;
 
 167                                 next_write_data = alu_result;
 
 170                         if (insn[20] /* S */) begin
 
 172                                 next_outcpsr = ((insn[15:12] == 4'b1111) && insn[20]) ? spsr : alu_outcpsr;
 
 175                 `DECODE_LDRSTR_UNDEFINED,       /* Undefined. I hate ARM */
 
 176                 `DECODE_LDRSTR,         /* Single data transfer */
 
 177                 `DECODE_LDMSTM:         /* Block data transfer */
 
 179                 `DECODE_BRANCH:         /* Branch */
 
 181                         if(insn[24] /* L */) begin
 
 183                                 next_write_num = 4'hE; /* link register */
 
 184                                 next_write_data = pc + 32'h4;
 
 190         /* Multiplier inputs */
 
 194                 mult_acc0 = 32'hxxxxxxxx;
 
 195                 mult_in0 = 32'hxxxxxxxx;
 
 196                 mult_in1 = 32'hxxxxxxxx;
 
 201                         if (!prevstall /* i.e., this is a new one */ && !inbubble /* i.e., this is a real one */)
 
 204                                 mult_acc0 = insn[21] /* A */ ? op0 /* Rn */ : 32'h0;
 
 205                                 mult_in0 = op1 /* Rm */;
 
 206                                 mult_in1 = op2 /* Rs */;
 
 207                                 $display("New MUL instruction");
 
 213         /* Miscellaneous cleanup. */
 
 216                 next_outbubble = inbubble | flush | delayedflush;
 
 219                 jmppc = 32'h00000000;
 
 222                 `DECODE_ALU_MULT:       /* Multiply -- must come before ALU, because it pattern matches a specific case of ALU */
 
 223                         next_outbubble = next_outbubble | !mult_done | !prevstall;
 
 224                 `DECODE_ALU_MRS,        /* MRS (Transfer PSR to register) */
 
 225                 `DECODE_ALU_MSR,        /* MSR (Transfer register to PSR) */
 
 226                 `DECODE_ALU_MSR_FLAGS,  /* MSR (Transfer register or immediate to PSR, flag bits only) */
 
 227                 `DECODE_ALU_SWP,        /* Atomic swap */
 
 228                 `DECODE_ALU_BX,         /* Branch */
 
 229                 `DECODE_ALU_HDATA_REG,  /* Halfword transfer - register offset */
 
 230                 `DECODE_ALU_HDATA_IMM,  /* Halfword transfer - immediate offset */
 
 231                 `DECODE_ALU,            /* ALU */
 
 232                 `DECODE_LDRSTR_UNDEFINED,       /* Undefined. I hate ARM */
 
 233                 `DECODE_LDRSTR,         /* Single data transfer */
 
 234                 `DECODE_LDMSTM:         /* Block data transfer */
 
 238                         if(!inbubble && !flush && !delayedflush && !outstall /* Let someone else take precedence. */) begin
 
 239                                 jmppc = pc + op0 + 32'h8;
 
 243                 `DECODE_LDCSTC,         /* Coprocessor data transfer */
 
 244                 `DECODE_CDP,            /* Coprocessor data op */
 
 245                 `DECODE_MRCMCR,         /* Coprocessor register transfer */
 
 246                 `DECODE_SWI:            /* SWI */
 
 248                 default:                /* X everything else out */
 
 256         input Nrst,     /* XXX not used yet */
 
 264         output reg [31:0] result);
 
 267         reg [31:0] multiplicand;
 
 270         always @(posedge clk)
 
 278                         bitfield <= {2'b00, bitfield[31:2]};
 
 279                         multiplicand <= {multiplicand[29:0], 2'b00};
 
 281                                 (bitfield[0] ? multiplicand : 0) +
 
 282                                 (bitfield[1] ? {multiplicand[30:0], 1'b0} : 0);
 
 283                         if (bitfield == 0) begin
 
 293         input Nrst,     /* XXX not used yet */
 
 302         output reg [31:0] result,
 
 303         output reg [31:0] cpsr_out,
 
 307         reg flag_n, flag_z, flag_c, flag_v;
 
 308         wire [32:0] sum, diff, rdiff;
 
 309         wire sum_v, diff_v, rdiff_v;
 
 311         assign sum = {1'b0, in0} + {1'b0, in1};
 
 312         assign diff = {1'b0, in0} - {1'b0, in1};
 
 313         assign rdiff = {1'b0, in1} - {1'b0, in0};
 
 314         assign sum_v = (in0[31] ^~ in1[31]) & (sum[31] ^ in0[31]);
 
 315         assign diff_v = (in0[31] ^ in1[31]) & (diff[31] ^ in0[31]);
 
 316         assign rdiff_v = (in0[31] ^ in1[31]) & (rdiff[31] ^ in1[31]);
 
 321                 flag_c = cpsr[`CPSR_C];
 
 322                 flag_v = cpsr[`CPSR_V];
 
 326                         flag_c = shifter_carry;
 
 331                         flag_c = shifter_carry;
 
 335                         {flag_c, result} = diff;
 
 341                         {flag_c, result} = rdiff;
 
 347                         {flag_c, result} = sum;
 
 352                         {flag_c, result} = sum + {32'b0, cpsr[`CPSR_C]};
 
 353                         flag_v = sum_v | (~sum[31] & result[31]);
 
 357                         {flag_c, result} = diff - {32'b0, (~cpsr[`CPSR_C])};
 
 359                         flag_v = diff_v | (diff[31] & ~result[31]);
 
 363                         {flag_c, result} = rdiff - {32'b0, (~cpsr[`CPSR_C])};
 
 365                         flag_v = rdiff_v | (rdiff[31] & ~result[31]);
 
 370                         flag_c = shifter_carry;
 
 375                         flag_c = shifter_carry;
 
 379                         {flag_c, result} = diff;
 
 385                         {flag_c, result} = sum;
 
 391                         flag_c = shifter_carry;
 
 396                         flag_c = shifter_carry;
 
 400                         result = in0 & (~in1);
 
 401                         flag_c = shifter_carry;
 
 406                         flag_c = shifter_carry;
 
 411                 flag_z = (result == 0);
 
 414                 cpsr_out = setflags ? {flag_n, flag_z, flag_c, flag_v, cpsr[27:0]} : cpsr;