3         input Nrst,     /* XXX not used yet */
 
  18         output reg outstall = 0,
 
  19         output reg outbubble = 1,
 
  20         output reg [31:0] outcpsr = 0,
 
  21         output reg [31:0] outspsr = 0,
 
  22         output reg write_reg = 1'bx,
 
  23         output reg [3:0] write_num = 4'bxxxx,
 
  24         output reg [31:0] write_data = 32'hxxxxxxxx,
 
  25         output reg [31:0] jmppc,
 
  27         output reg [31:0] outpc,
 
  28         output reg [31:0] outinsn,
 
  29         output reg [31:0] outop0, outop1, outop2
 
  33         reg [31:0] mult_acc0, mult_in0, mult_in1;
 
  35         wire [31:0] mult_result;
 
  37         reg [31:0] alu_in0, alu_in1;
 
  40         wire [31:0] alu_result, alu_outcpsr;
 
  44         reg [31:0] next_outcpsr, next_outspsr;
 
  46         reg [3:0] next_write_num;
 
  48         reg [31:0] next_write_data;
 
  50         Multiplier multiplier(
 
  51                 .clk(clk), .Nrst(Nrst),
 
  52                 .start(mult_start), .acc0(mult_acc0), .in0(mult_in0),
 
  53                 .in1(mult_in1), .done(mult_done), .result(mult_result));
 
  56                 .clk(clk), .Nrst(Nrst),
 
  57                 .in0(alu_in0), .in1(alu_in1), .cpsr(cpsr), .op(alu_op),
 
  58                 .setflags(alu_setflags), .shifter_carry(carry),
 
  59                 .result(alu_result), .cpsr_out(alu_outcpsr), .setres(alu_setres));
 
  65                         outbubble <= next_outbubble;
 
  66                         outcpsr <= next_outcpsr;
 
  67                         outspsr <= next_outspsr;
 
  68                         write_reg <= next_write_reg;
 
  69                         write_num <= next_write_num;
 
  70                         write_data <= next_write_data;
 
  81                 prevstall <= outstall;
 
  86                 next_outbubble = inbubble | flush;
 
  90                 next_write_num = 4'hx;
 
  91                 next_write_data = 32'hxxxxxxxx;
 
  94                 mult_acc0 = 32'hxxxxxxxx;
 
  95                 mult_in0 = 32'hxxxxxxxx;
 
  96                 mult_in1 = 32'hxxxxxxxx;
 
  98                 alu_in0 = 32'hxxxxxxxx;
 
  99                 alu_in1 = 32'hxxxxxxxx;
 
 100                 alu_op = 4'hx;  /* hax! */
 
 104                 jmppc = 32'hxxxxxxxx;
 
 107                 `DECODE_ALU_MULT:       /* Multiply -- must come before ALU, because it pattern matches a specific case of ALU */
 
 109                         if (!prevstall && !inbubble)
 
 112                                 mult_acc0 = insn[21] /* A */ ? op0 /* Rn */ : 32'h0;
 
 113                                 mult_in0 = op1 /* Rm */;
 
 114                                 mult_in1 = op2 /* Rs */;
 
 115                                 $display("New MUL instruction");
 
 117                         outstall = stall | ((!prevstall | !mult_done) && !inbubble);
 
 118                         next_outbubble = inbubble | !mult_done | !prevstall;
 
 119                         next_outcpsr = insn[20] /* S */ ? {mult_result[31] /* N */, mult_result == 0 /* Z */, 1'b0 /* C */, cpsr[28] /* V */, cpsr[27:0]} : cpsr;
 
 121                         next_write_num = insn[19:16] /* Rd -- why the fuck isn't this the same place as ALU */;
 
 122                         next_write_data = mult_result;
 
 124 //              `DECODE_ALU_MUL_LONG,   /* Multiply long */
 
 125                 `DECODE_ALU_MRS:        /* MRS (Transfer PSR to register) */
 
 128                         next_write_num = insn[15:12];
 
 129                         if (insn[22] /* Ps */)
 
 130                                 next_write_data = spsr;
 
 132                                 next_write_data = cpsr;
 
 134                 `DECODE_ALU_MSR,        /* MSR (Transfer register to PSR) */
 
 135                 `DECODE_ALU_MSR_FLAGS:  /* MSR (Transfer register or immediate to PSR, flag bits only) */
 
 136                         if ((cpsr[4:0] == `MODE_USR) || (insn[16] /* that random bit */ == 1'b0))       /* flags only */
 
 138                                 if (insn[22] /* Ps */)
 
 139                                         next_outspsr = {op0[31:29], spsr[28:0]};
 
 141                                         next_outcpsr = {op0[31:29], cpsr[28:0]};
 
 143                                 if (insn[22] /* Ps */)
 
 148                 `DECODE_ALU_SWP,        /* Atomic swap */
 
 149                 `DECODE_ALU_BX,         /* Branch */
 
 150                 `DECODE_ALU_HDATA_REG,  /* Halfword transfer - register offset */
 
 151                 `DECODE_ALU_HDATA_IMM:  /* Halfword transfer - immediate offset */
 
 153                 `DECODE_ALU:            /* ALU */
 
 157                         alu_op = insn[24:21];
 
 158                         alu_setflags = insn[20] /* S */;
 
 160                         if (alu_setres) begin
 
 162                                 next_write_num = insn[15:12] /* Rd */;
 
 163                                 next_write_data = alu_result;
 
 166                         next_outcpsr = ((insn[15:12] == 4'b1111) && insn[20]) ? spsr : alu_outcpsr;
 
 168                 `DECODE_LDRSTR_UNDEFINED,       /* Undefined. I hate ARM */
 
 169                 `DECODE_LDRSTR,         /* Single data transfer */
 
 170                 `DECODE_LDMSTM:         /* Block data transfer */
 
 175                                 jmppc = pc + op0 + 32'h8;
 
 178                                         next_write_num = 4'hE; /* link register */
 
 179                                         next_write_data = pc - 32'h4;
 
 184                 `DECODE_LDCSTC,         /* Coprocessor data transfer */
 
 185                 `DECODE_CDP,            /* Coprocessor data op */
 
 186                 `DECODE_MRCMCR,         /* Coprocessor register transfer */
 
 187                 `DECODE_SWI:            /* SWI */
 
 189                 default:                /* X everything else out */
 
 197         input Nrst,     /* XXX not used yet */
 
 205         output reg [31:0] result);
 
 208         reg [31:0] multiplicand;
 
 211         always @(posedge clk)
 
 219                         bitfield <= {2'b00, bitfield[31:2]};
 
 220                         multiplicand <= {multiplicand[29:0], 2'b00};
 
 222                                 (bitfield[0] ? multiplicand : 0) +
 
 223                                 (bitfield[1] ? {multiplicand[30:0], 1'b0} : 0);
 
 224                         if (bitfield == 0) begin
 
 234         input Nrst,     /* XXX not used yet */
 
 243         output reg [31:0] result,
 
 244         output reg [31:0] cpsr_out,
 
 248         reg flag_n, flag_z, flag_c, flag_v;
 
 249         wire [32:0] sum, diff, rdiff;
 
 250         wire sum_v, diff_v, rdiff_v;
 
 252         assign sum = {1'b0, in0} + {1'b0, in1};
 
 253         assign diff = {1'b0, in0} - {1'b0, in1};
 
 254         assign rdiff = {1'b0, in1} + {1'b0, in0};
 
 255         assign sum_v = (in0[31] ^~ in1[31]) & (sum[31] ^ in0[31]);
 
 256         assign diff_v = (in0[31] ^ in1[31]) & (diff[31] ^ in0[31]);
 
 257         assign rdiff_v = (in0[31] ^ in1[31]) & (rdiff[31] ^ in1[31]);
 
 262                 flag_c = cpsr[`CPSR_C];
 
 263                 flag_v = cpsr[`CPSR_V];
 
 267                         flag_c = shifter_carry;
 
 272                         flag_c = shifter_carry;
 
 276                         {flag_c, result} = diff;
 
 281                         {flag_c, result} = rdiff;
 
 286                         {flag_c, result} = sum;
 
 291                         {flag_c, result} = sum + {32'b0, cpsr[`CPSR_C]};
 
 292                         flag_v = sum_v | (~sum[31] & result[31]);
 
 296                         {flag_c, result} = diff - {32'b0, (~cpsr[`CPSR_C])};
 
 297                         flag_v = diff_v | (diff[31] & ~result[31]);
 
 301                         {flag_c, result} = rdiff - {32'b0, (~cpsr[`CPSR_C])};
 
 302                         flag_v = rdiff_v | (rdiff[31] & ~result[31]);
 
 307                         flag_c = shifter_carry;
 
 312                         flag_c = shifter_carry;
 
 316                         {flag_c, result} = diff;
 
 321                         {flag_c, result} = sum;
 
 327                         flag_c = shifter_carry;
 
 332                         flag_c = shifter_carry;
 
 336                         result = in0 & (~in1);
 
 337                         flag_c = shifter_carry;
 
 342                         flag_c = shifter_carry;
 
 347                 flag_z = (result == 0);
 
 350                 cpsr_out = setflags ? {flag_n, flag_z, flag_c, flag_v, cpsr[27:0]} : cpsr;