* An implementation of a pipelined algorithm to calculate the Mandelbrot set
* in real time on an FPGA.
*/
+
+/* verilator lint_off WIDTH */
`define XRES 640
`define YRES 480
-`define WHIRRRRR 27
+`define WHIRRRRR 47
+
+`define TOPBIT 13
module SyncGen(
input pixclk,
module NaiveMultiplier(
input clk,
- input [12:0] x, y,
+ input [`TOPBIT:0] x, y,
input xsign, ysign,
- output reg [12:0] out,
+ output reg [`TOPBIT:0] out,
output reg sign,
output reg ovf);
always @(posedge clk)
begin
{ovf,out} <=
- (((y[12] ? (x ) : 0) +
- (y[11] ? (x >> 1) : 0) +
- (y[10] ? (x >> 2) : 0)) +
- (((y[9] ? (x >> 3) : 0) +
- (y[8] ? (x >> 4) : 0)) +
- ((y[7] ? (x >> 5) : 0) +
- (y[6] ? (x >> 6) : 0))))+
- (((y[5] ? (x >> 7) : 0) +
- (y[4] ? (x >> 8) : 0) +
- (y[3] ? (x >> 9) : 0)) +
- ((y[2] ? (x >> 10): 0) +
- (y[1] ? (x >> 11): 0) +
- (y[0] ? (x >> 12): 0)));
+ ((((0) + // 15
+ (0)) + // 14
+ ((y[13] ? (x ) : 0) +
+ (y[12] ? (x[`TOPBIT:1]) : 0))) +
+ (((y[11] ? (x[`TOPBIT:2]) : 0) +
+ (y[10] ? (x[`TOPBIT:3]) : 0)) +
+ ((y[9] ? (x[`TOPBIT:4]) : 0) +
+ (y[8] ? (x[`TOPBIT:5]) : 0))))+
+ ((((y[7] ? (x[`TOPBIT:6]) : 0) +
+ (y[6] ? (x[`TOPBIT:7]) : 0)) +
+ ((y[5] ? (x[`TOPBIT:8]) : 0) +
+ (y[4] ? (x[`TOPBIT:9]) : 0))) +
+ (((y[3] ? (x[`TOPBIT:10]): 0) +
+ (y[2] ? (x[`TOPBIT:11]): 0)) +
+ ((y[1] ? (x[`TOPBIT:12]): 0) +
+ (y[0] ? (x[`TOPBIT]) : 0))));
sign <= xsign ^ ysign;
end
module Multiplier(
input clk,
- input [12:0] x, y,
+ input [`TOPBIT:0] x, y,
input xsign, ysign,
- output wire [12:0] out,
+ output wire [`TOPBIT:0] out,
output wire sign,
output wire overflow);
// Yuq.
module MandelUnit(
input clk,
- input [12:0] x, y,
+ input [`TOPBIT:0] x, y,
input xsign, ysign,
- input [14:0] r, i,
+ input [`TOPBIT+2:0] r, i,
input rsign, isign,
input [7:0] ibail, icuriter,
- output reg [12:0] xout, yout,
+ output reg [`TOPBIT:0] xout, yout,
output reg xsout, ysout,
- output reg [14:0] rout, iout,
+ output reg [`TOPBIT+2:0] rout, iout,
output reg rsout, isout,
output reg [7:0] obail, ocuriter);
- wire [13:0] r2, i2;
- wire [14:0] ri, diff;
- wire [15:0] twocdiff;
+ wire [`TOPBIT+1:0] r2, i2;
+ wire [`TOPBIT+2:0] ri, diff;
+ wire [`TOPBIT+3:0] twocdiff;
wire r2sign, i2sign, risign, dsign;
- wire [13:0] bigsum;
+ wire [`TOPBIT+2:0] bigsum;
wire bigsum_ovf;
- reg [12:0] xd, yd;
+ reg [`TOPBIT:0] xd, yd;
reg ineedbaild;
reg xsd, ysd;
reg [7:0] ibaild, curiterd;
assign ri[0] = 0;
- Multiplier r2m(clk, r[12:0], r[12:0], rsign, rsign, r2[12:0], r2sign, r2[13]);
- Multiplier i2m(clk, i[12:0], i[12:0], isign, isign, i2[12:0], i2sign, i2[13]);
- Multiplier rim(clk, r[12:0], i[12:0], rsign, isign, ri[13:1], risign, ri[14]);
+ Multiplier r2m(clk, r[`TOPBIT:0], r[`TOPBIT:0], rsign, rsign, r2[`TOPBIT:0], r2sign, r2[`TOPBIT+1]);
+ Multiplier i2m(clk, i[`TOPBIT:0], i[`TOPBIT:0], isign, isign, i2[`TOPBIT:0], i2sign, i2[`TOPBIT+1]);
+ Multiplier rim(clk, r[`TOPBIT:0], i[`TOPBIT:0], rsign, isign, ri[`TOPBIT+1:1], risign, ri[`TOPBIT+2]);
- assign bigsum = r2[12:0] + i2[12:0];
- assign bigsum_ovf = bigsum[13] | r2[13] | i2[13];
+ assign bigsum = r2[`TOPBIT+1:0] + i2[`TOPBIT+1:0];
+ assign bigsum_ovf = bigsum[`TOPBIT+2];
assign twocdiff = r2 - i2;
- assign diff = twocdiff[15] ? -twocdiff : twocdiff;
- assign dsign = twocdiff[15];
+ assign diff = twocdiff[`TOPBIT+3] ? -twocdiff : twocdiff;
+ assign dsign = twocdiff[`TOPBIT+3];
- wire [15:0] twocrout = xd - diff;
- wire [15:0] twociout = yd - ri;
+ wire [`TOPBIT+3:0] twocrout = xd - diff;
+ wire [`TOPBIT+3:0] twociout = yd - ri;
always @ (posedge clk)
begin
ysout <= ysd;
ibaild <= ibail;
curiterd <= icuriter;
- ineedbaild <= r[13] | r[14] | i[13] | i[14];
+ ineedbaild <= r[`TOPBIT+1] | r[`TOPBIT+2] | i[`TOPBIT+1] | i[`TOPBIT+2];
// r^2 - i^2 + x
if (xsd ^ dsign) begin
- if (twocrout[15]) begin // diff > xd
+ if (twocrout[`TOPBIT+3]) begin // diff > xd
rout <= -twocrout;
rsout <= dsign;
end else begin
// 2 * r * i + y
if (ysd ^ risign) begin
- if (twociout[15]) begin // ri > yd
+ if (twociout[`TOPBIT+3]) begin // ri > yd
iout <= -twociout;
isout <= risign;
end else begin
input mclk,
input pixclk,
input [11:0] x, y,
- input [13:0] xofs, yofs,
+ input [`TOPBIT+1:0] xofs, yofs,
input [7:0] colorofs,
input [2:0] scale,
output reg [2:0] red, green, output reg [1:0] blue);
-`define MAXOUTN 11
+`define MAXOUTN 21
- wire [12:0] rx, ry;
- wire [13:0] nx, ny;
+ wire [`TOPBIT:0] rx, ry;
+ wire [`TOPBIT+1:0] nx, ny;
wire rxsign, rysign;
- assign nx = x + xofs;
- assign ny = y + yofs;
- assign rx = (nx[13] ? -nx[12:0] : nx[12:0]) << scale;
- assign rxsign = nx[13];
- assign ry = (ny[13] ? -ny[12:0] : ny[12:0]) << scale;
- assign rysign = ny[13];
+ assign nx = {2'b0,x} + {2'b0,xofs};
+ assign ny = {2'b0,y} + {2'b0,yofs};
+ assign rx = (nx[`TOPBIT+1] ? -nx[`TOPBIT:0] : nx[`TOPBIT:0]) << scale;
+ assign rxsign = nx[`TOPBIT+1];
+ assign ry = (ny[`TOPBIT+1] ? -ny[`TOPBIT:0] : ny[`TOPBIT:0]) << scale;
+ assign rysign = ny[`TOPBIT+1];
- wire [14:0] mr[`MAXOUTN:0], mi[`MAXOUTN:0];
+ wire [`TOPBIT+2:0] mr[`MAXOUTN:0], mi[`MAXOUTN:0];
wire mrs[`MAXOUTN:0], mis[`MAXOUTN:0];
wire [7:0] mb[`MAXOUTN:0];
- wire [12:0] xprop[`MAXOUTN:0], yprop[`MAXOUTN:0];
+ wire [`TOPBIT:0] xprop[`MAXOUTN:0], yprop[`MAXOUTN:0];
wire xsprop[`MAXOUTN:0], ysprop[`MAXOUTN:0];
wire [7:0] curiter[`MAXOUTN:0];
- reg [14:0] initx, inity, initr, initi;
+ reg [`TOPBIT:0] initx, inity;
+ reg [`TOPBIT+2:0] initr, initi;
reg [7:0] initci, initb;
reg initxs, initys, initrs, initis;
// Values after the number of iterations denoted by the subscript.
- reg [14:0] stagex [2:1], stagey [2:1], stager [2:1], stagei [2:1];
+ reg [`TOPBIT:0] stagex [2:1], stagey [2:1];
+ reg [`TOPBIT+2:0] stager [2:1], stagei [2:1];
reg [7:0] stageci [2:1], stageb [2:1];
reg stagexs [2:1], stageys [2:1], stagers [2:1], stageis [2:1];
inity <= (state[2]) ? ry :
(state[0]) ? stagey[1] :
(state[1]) ? stagey[2] : 0;
- initr <= (state[2]) ? rx :
+ initr <= (state[2]) ? {2'b0,rx} :
(state[0]) ? stager[1] :
(state[1]) ? stager[2] : 0;
- initi <= (state[2]) ? ry :
+ initi <= (state[2]) ? {2'b0,ry} :
(state[0]) ? stagei[1] :
(state[1]) ? stagei[2] : 0;
initxs <= (state[2]) ? rxsign :
3'b001: state <= 3'b010;
3'b010: state <= 3'b100;
3'b100: state <= 3'b001;
+ `ifdef isim
+ default: begin $display("invalid state"); $finish; end
+ `endif
endcase
// Data output handling
`MAKE_UNIT(mu9, 8);
`MAKE_UNIT(mua, 9);
`MAKE_UNIT(mub, 10);
+ `MAKE_UNIT(muc, 11);
+ `MAKE_UNIT(mud, 12);
+ `MAKE_UNIT(mue, 13);
+ `MAKE_UNIT(muf, 14);
+ `MAKE_UNIT(mug, 15);
+ `MAKE_UNIT(muh, 16);
+ `MAKE_UNIT(mui, 17);
+ `MAKE_UNIT(muj, 18);
+ `MAKE_UNIT(muk, 19);
+ `MAKE_UNIT(mul, 20);
endmodule
module Logo(
endmodule
module MandelTop(
+`ifdef verilator
+ input pixclk, mclk,
+`else
input gclk, output wire dcmok,
+`endif
output wire vs, hs,
output wire [2:0] red, green, output [1:0] blue,
input left, right, up, down, rst, cycle, logooff,
input [2:0] scale);
-
+
+`ifdef verilator
+`else
wire pixclk, mclk, clk;
wire dcm1ok, dcm2ok;
assign dcmok = dcm1ok && dcm2ok;
.CLKFX_OUT(mclk),
.LOCKED_OUT(dcm2ok)
);
-
+`endif
+
wire border;
wire [11:0] x, y;
- reg [13:0] xofs = -`XRES/2, yofs = -`YRES/2;
+ reg [`TOPBIT+1:0] xofs = -`XRES/2, yofs = -`YRES/2;
reg [5:0] slowctr = 0;
reg [7:0] colorcycle = 0;
wire [11:0] realx, realy;
wire [1:0] mandelb, logob;
SyncGen sync(pixclk, vs, hs, x, y, realx, realy, border);
- Mandelbrot mandel(mclk, pixclk, x, y, xofs, yofs, cycle ? colorcycle : 0, scale, mandelr, mandelg, mandelb);
+ Mandelbrot mandel(mclk, pixclk, x, y, xofs, yofs, cycle ? colorcycle : 8'b0, scale, mandelr, mandelg, mandelb);
Logo logo(pixclk, realx, realy, logoenb, logor, logog, logob);
assign {red,green,blue} =