]> Joshua Wise's Git repositories - mandelfpga.git/blame_incremental - Main.v
Add support for Verilator
[mandelfpga.git] / Main.v
... / ...
CommitLineData
1/*
2 * MandelFPGA
3 * by Joshua Wise and Chris Lu
4 *
5 * An implementation of a pipelined algorithm to calculate the Mandelbrot set
6 * in real time on an FPGA.
7 */
8
9/* verilator lint_off WIDTH */
10
11`define XRES 640
12`define YRES 480
13`define WHIRRRRR 27
14
15module SyncGen(
16 input pixclk,
17 output reg vs, hs,
18 output reg [11:0] xout = `WHIRRRRR, yout = 0,
19 output wire [11:0] xoutreal, youtreal,
20 output reg border);
21
22 reg [11:0] x = 0, y = 0; // Used for generating border and timing.
23 assign xoutreal = x;
24 assign youtreal = y;
25
26 parameter XFPORCH = 16;
27 parameter XSYNC = 96;
28 parameter XBPORCH = 48;
29
30 parameter YFPORCH = 10;
31 parameter YSYNC = 2;
32 parameter YBPORCH = 29;
33
34 always @(posedge pixclk)
35 begin
36 if (x >= (`XRES + XFPORCH + XSYNC + XBPORCH))
37 begin
38 if (y >= (`YRES + YFPORCH + YSYNC + YBPORCH))
39 y <= 0;
40 else
41 y <= y + 1;
42 x <= 0;
43 end else
44 x <= x + 1;
45
46 if (xout >= (`XRES + XFPORCH + XSYNC + XBPORCH))
47 begin
48 if (yout >= (`YRES + YFPORCH + YSYNC + YBPORCH))
49 yout <= 0;
50 else
51 yout <= yout + 1;
52 xout <= 0;
53 end else
54 xout <= xout + 1;
55 hs <= (x >= (`XRES + XFPORCH)) && (x < (`XRES + XFPORCH + XSYNC));
56 vs <= (y >= (`YRES + YFPORCH)) && (y < (`YRES + YFPORCH + YSYNC));
57 border <= (x > `XRES) || (y > `YRES);
58 end
59endmodule
60
61// bits: 1.12
62
63module NaiveMultiplier(
64 input clk,
65 input [12:0] x, y,
66 input xsign, ysign,
67 output reg [12:0] out,
68 output reg sign,
69 output reg ovf);
70
71 always @(posedge clk)
72 begin
73 {ovf,out} <=
74 (((y[12] ? (x ) : 0) +
75 (y[11] ? (x[12:1]) : 0) +
76 (y[10] ? (x[12:2]) : 0)) +
77 (((y[9] ? (x[12:3]) : 0) +
78 (y[8] ? (x[12:4]) : 0)) +
79 ((y[7] ? (x[12:5]) : 0) +
80 (y[6] ? (x[12:6]) : 0))))+
81 (((y[5] ? (x[12:7]) : 0) +
82 (y[4] ? (x[12:8]) : 0) +
83 (y[3] ? (x[12:9]) : 0)) +
84 ((y[2] ? (x[12:10]): 0) +
85 (y[1] ? (x[12:11]): 0) +
86 (y[0] ? (x[12]): 0)));
87 sign <= xsign ^ ysign;
88 end
89
90endmodule
91
92module Multiplier(
93 input clk,
94 input [12:0] x, y,
95 input xsign, ysign,
96 output wire [12:0] out,
97 output wire sign,
98 output wire overflow);
99
100 NaiveMultiplier nm(clk, x, y, xsign, ysign, out, sign, overflow);
101
102endmodule
103
104// Yuq.
105module MandelUnit(
106 input clk,
107 input [12:0] x, y,
108 input xsign, ysign,
109 input [14:0] r, i,
110 input rsign, isign,
111 input [7:0] ibail, icuriter,
112 output reg [12:0] xout, yout,
113 output reg xsout, ysout,
114 output reg [14:0] rout, iout,
115 output reg rsout, isout,
116 output reg [7:0] obail, ocuriter);
117
118 wire [13:0] r2, i2;
119 wire [14:0] ri, diff;
120 wire [15:0] twocdiff;
121 wire r2sign, i2sign, risign, dsign;
122 wire [14:0] bigsum;
123 wire bigsum_ovf;
124
125 reg [12:0] xd, yd;
126 reg ineedbaild;
127 reg xsd, ysd;
128 reg [7:0] ibaild, curiterd;
129
130 assign ri[0] = 0;
131
132 Multiplier r2m(clk, r[12:0], r[12:0], rsign, rsign, r2[12:0], r2sign, r2[13]);
133 Multiplier i2m(clk, i[12:0], i[12:0], isign, isign, i2[12:0], i2sign, i2[13]);
134 Multiplier rim(clk, r[12:0], i[12:0], rsign, isign, ri[13:1], risign, ri[14]);
135
136 assign bigsum = r2[13:0] + i2[13:0];
137 assign bigsum_ovf = bigsum[14];
138
139 assign twocdiff = r2 - i2;
140 assign diff = twocdiff[15] ? -twocdiff : twocdiff;
141 assign dsign = twocdiff[15];
142
143 wire [15:0] twocrout = xd - diff;
144 wire [15:0] twociout = yd - ri;
145
146 always @ (posedge clk)
147 begin
148 xd <= x;
149 yd <= y;
150 xsd <= xsign;
151 ysd <= ysign;
152 xout <= xd;
153 yout <= yd;
154 xsout <= xsd;
155 ysout <= ysd;
156 ibaild <= ibail;
157 curiterd <= icuriter;
158 ineedbaild <= r[13] | r[14] | i[13] | i[14];
159
160 // r^2 - i^2 + x
161 if (xsd ^ dsign) begin
162 if (twocrout[15]) begin // diff > xd
163 rout <= -twocrout;
164 rsout <= dsign;
165 end else begin
166 rout <= twocrout;
167 rsout <= xsd;
168 end
169 end else begin
170 rout <= diff + xd;
171 rsout <= xsd; // xsd == dsign
172 end
173
174 // 2 * r * i + y
175 if (ysd ^ risign) begin
176 if (twociout[15]) begin // ri > yd
177 iout <= -twociout;
178 isout <= risign;
179 end else begin
180 iout <= twociout;
181 isout <= ysd;
182 end
183 end else begin
184 iout <= ri + yd;
185 isout <= ysd;
186 end
187
188 // If we haven't bailed out, and we meet any of the bailout conditions,
189 // bail out now. Otherwise, leave the bailout at whatever it was before.
190 if ((ibaild == 255) && (bigsum_ovf | ineedbaild))
191 obail <= curiterd;
192 else
193 obail <= ibaild;
194 ocuriter <= curiterd + 8'b1;
195 end
196
197endmodule
198
199module Mandelbrot(
200 input mclk,
201 input pixclk,
202 input [11:0] x, y,
203 input [13:0] xofs, yofs,
204 input [7:0] colorofs,
205 input [2:0] scale,
206 output reg [2:0] red, green, output reg [1:0] blue);
207
208`define MAXOUTN 11
209
210 wire [12:0] rx, ry;
211 wire [13:0] nx, ny;
212 wire rxsign, rysign;
213
214 assign nx = {2'b0,x} + {2'b0,xofs};
215 assign ny = {2'b0,y} + {2'b0,yofs};
216 assign rx = (nx[13] ? -nx[12:0] : nx[12:0]) << scale;
217 assign rxsign = nx[13];
218 assign ry = (ny[13] ? -ny[12:0] : ny[12:0]) << scale;
219 assign rysign = ny[13];
220
221 wire [14:0] mr[`MAXOUTN:0], mi[`MAXOUTN:0];
222 wire mrs[`MAXOUTN:0], mis[`MAXOUTN:0];
223 wire [7:0] mb[`MAXOUTN:0];
224 wire [12:0] xprop[`MAXOUTN:0], yprop[`MAXOUTN:0];
225 wire xsprop[`MAXOUTN:0], ysprop[`MAXOUTN:0];
226 wire [7:0] curiter[`MAXOUTN:0];
227
228 reg [12:0] initx, inity;
229 reg [14:0] initr, initi;
230 reg [7:0] initci, initb;
231 reg initxs, initys, initrs, initis;
232
233 // Values after the number of iterations denoted by the subscript.
234 reg [12:0] stagex [2:1], stagey [2:1];
235 reg [14:0] stager [2:1], stagei [2:1];
236 reg [7:0] stageci [2:1], stageb [2:1];
237 reg stagexs [2:1], stageys [2:1], stagers [2:1], stageis [2:1];
238
239 reg [2:0] state = 3'b001; // One-hot encoded state.
240
241 // States are advanced one from what they should be, so that they'll
242 // get there on the _next_ mclk.
243 always @(posedge mclk)
244 begin
245 initx <= (state[2]) ? rx :
246 (state[0]) ? stagex[1] :
247 (state[1]) ? stagex[2] : 0;
248 inity <= (state[2]) ? ry :
249 (state[0]) ? stagey[1] :
250 (state[1]) ? stagey[2] : 0;
251 initr <= (state[2]) ? {2'b0,rx} :
252 (state[0]) ? stager[1] :
253 (state[1]) ? stager[2] : 0;
254 initi <= (state[2]) ? {2'b0,ry} :
255 (state[0]) ? stagei[1] :
256 (state[1]) ? stagei[2] : 0;
257 initxs <= (state[2]) ? rxsign :
258 (state[0]) ? stagexs[1] :
259 (state[1]) ? stagexs[2] : 0;
260 initys <= (state[2]) ? rysign :
261 (state[0]) ? stageys[1] :
262 (state[1]) ? stageys[2] : 0;
263 initrs <= (state[2]) ? rxsign :
264 (state[0]) ? stagers[1] :
265 (state[1]) ? stagers[2] : 0;
266 initis <= (state[2]) ? rysign :
267 (state[0]) ? stageis[1] :
268 (state[1]) ? stageis[2] : 0;
269 initb <= (state[2]) ? 8'b11111111 :
270 (state[0]) ? stageb[1] :
271 (state[1]) ? stageb[2] : 0;
272 initci <= (state[2]) ? 8'b00000000 :
273 (state[0]) ? stageci[1] :
274 (state[1]) ? stageci[2] : 0;
275 end
276
277 reg [7:0] out;
278
279 // We detect when the state should be poked by a high negedge followed
280 // by a high posedge -- if that happens, then we're guaranteed that the
281 // state following the current state will be 3'b100.
282 reg lastneg;
283 always @(negedge mclk)
284 lastneg <= pixclk;
285
286 always @(posedge mclk)
287 begin
288 if (lastneg && pixclk) // If a pixclk has happened, the state should be reset.
289 state <= 3'b100;
290 else // Otherwise, just poke it forward.
291 case(state)
292 3'b001: state <= 3'b010;
293 3'b010: state <= 3'b100;
294 3'b100: state <= 3'b001;
295 default: begin $display("invalid state"); $finish; end
296 endcase
297
298 // Data output handling
299 if (state[0]) begin
300 {red, green, blue} <= {out[0],out[3],out[6],out[1],out[4],out[7],out[2],out[5]};
301 end
302 if (state[1]) begin
303 out <= ~mb[`MAXOUTN] + colorofs;
304 end
305
306 if (state[0]) begin // PnR0 in, PnR2 out
307 stagex[2] <= xprop[`MAXOUTN];
308 stagey[2] <= yprop[`MAXOUTN];
309 stager[2] <= mr[`MAXOUTN];
310 stagei[2] <= mi[`MAXOUTN];
311 stagexs[2] <= xsprop[`MAXOUTN];
312 stageys[2] <= ysprop[`MAXOUTN];
313 stagers[2] <= mrs[`MAXOUTN];
314 stageis[2] <= mis[`MAXOUTN];
315 stageb[2] <= mb[`MAXOUTN];
316 stageci[2] <= curiter[`MAXOUTN];
317 end
318
319 if (state[2]) begin // PnR2 in, PnR1 out
320 stagex[1] <= xprop[`MAXOUTN];
321 stagey[1] <= yprop[`MAXOUTN];
322 stager[1] <= mr[`MAXOUTN];
323 stagei[1] <= mi[`MAXOUTN];
324 stagexs[1] <= xsprop[`MAXOUTN];
325 stageys[1] <= ysprop[`MAXOUTN];
326 stagers[1] <= mrs[`MAXOUTN];
327 stageis[1] <= mis[`MAXOUTN];
328 stageb[1] <= mb[`MAXOUTN];
329 stageci[1] <= curiter[`MAXOUTN];
330 end
331 end
332
333 MandelUnit mu0(
334 mclk,
335 initx, inity, initxs, initys,
336 initr, initi, initrs, initis,
337 initb, initci,
338 xprop[0], yprop[0], xsprop[0], ysprop[0],
339 mr[0], mi[0], mrs[0], mis[0],
340 mb[0], curiter[0]);
341
342`define MAKE_UNIT(name, num) \
343 MandelUnit name(mclk, \
344 xprop[(num)], yprop[(num)], xsprop[(num)], ysprop[(num)], mr[(num)], mi[(num)], mrs[(num)], mis[(num)], mb[(num)], curiter[(num)], \
345 xprop[(num)+1], yprop[(num)+1], xsprop[(num)+1], ysprop[(num)+1], mr[(num)+1], mi[(num)+1], mrs[(num)+1], mis[(num)+1], mb[(num)+1], curiter[(num)+1])
346
347 `MAKE_UNIT(mu1, 0);
348 `MAKE_UNIT(mu2, 1);
349 `MAKE_UNIT(mu3, 2);
350 `MAKE_UNIT(mu4, 3);
351 `MAKE_UNIT(mu5, 4);
352 `MAKE_UNIT(mu6, 5);
353 `MAKE_UNIT(mu7, 6);
354 `MAKE_UNIT(mu8, 7);
355 `MAKE_UNIT(mu9, 8);
356 `MAKE_UNIT(mua, 9);
357 `MAKE_UNIT(mub, 10);
358endmodule
359
360module Logo(
361 input pixclk,
362 input [11:0] x, y,
363 output wire enb,
364 output wire [2:0] red, green, output wire [1:0] blue);
365
366 reg [1:0] logo[8191:0];
367 initial $readmemb("logo.readmemb", logo);
368
369 assign enb = (x < 96) && (y < 64);
370 wire [12:0] addr = {y[5:0], x[6:0]};
371 wire [1:0] data = logo[addr];
372 assign {red, green, blue} =
373 (data == 2'b00) ? 8'b00000000 :
374 ((data == 2'b01) ? 8'b00011100 :
375 ((data == 2'b10) ? 8'b11100000 :
376 8'b11111111));
377endmodule
378
379module MandelTop(
380`ifdef verilator
381 input pixclk, mclk,
382`else
383 input gclk, output wire dcmok,
384`endif
385 output wire vs, hs,
386 output wire [2:0] red, green, output [1:0] blue,
387 input left, right, up, down, rst, cycle, logooff,
388 input [2:0] scale);
389
390`ifdef verilator
391`else
392 wire pixclk, mclk, clk;
393 wire dcm1ok, dcm2ok;
394 assign dcmok = dcm1ok && dcm2ok;
395
396 IBUFG iclkbuf(.O(clk), .I(gclk));
397
398 pixDCM dcm( // CLKIN is 50MHz xtal, CLKFX_OUT is 25MHz
399 .CLKIN_IN(clk),
400 .CLKFX_OUT(pixclk),
401 .LOCKED_OUT(dcm1ok)
402 );
403
404 mandelDCM dcm2(
405 .CLKIN_IN(clk),
406 .CLKFX_OUT(mclk),
407 .LOCKED_OUT(dcm2ok)
408 );
409`endif
410
411 wire border;
412 wire [11:0] x, y;
413 reg [13:0] xofs = -`XRES/2, yofs = -`YRES/2;
414 reg [5:0] slowctr = 0;
415 reg [7:0] colorcycle = 0;
416 wire [11:0] realx, realy;
417
418 wire logoenb;
419 wire [2:0] mandelr, mandelg, logor, logog;
420 wire [1:0] mandelb, logob;
421
422 SyncGen sync(pixclk, vs, hs, x, y, realx, realy, border);
423 Mandelbrot mandel(mclk, pixclk, x, y, xofs, yofs, cycle ? colorcycle : 8'b0, scale, mandelr, mandelg, mandelb);
424 Logo logo(pixclk, realx, realy, logoenb, logor, logog, logob);
425
426 assign {red,green,blue} =
427 border ? 8'b00000000 :
428 (!logooff && logoenb) ? {logor, logog, logob} : {mandelr, mandelg, mandelb};
429
430 always @(posedge vs)
431 begin
432 if (rst)
433 begin
434 xofs <= -`XRES/2;
435 yofs <= -`YRES/2;
436 colorcycle <= 0;
437 end else begin
438 if (up) yofs <= yofs + 1;
439 else if (down) yofs <= yofs - 1;
440
441 if (left) xofs <= xofs + 1;
442 else if (right) xofs <= xofs - 1;
443
444 if (slowctr == 0)
445 colorcycle <= colorcycle + 1;
446 end
447
448 if (slowctr == 12)
449 slowctr <= 0;
450 else
451 slowctr <= slowctr + 1;
452 end
453endmodule
This page took 0.030309 seconds and 4 git commands to generate.