1 `define ADDR_LCDC 16'hFF40
2 `define ADDR_STAT 16'hFF41
3 `define ADDR_SCY 16'hFF42
4 `define ADDR_SCX 16'hFF43
5 `define ADDR_LY 16'hFF44
6 `define ADDR_LYC 16'hFF45
7 `define ADDR_DMA 16'hFF46
8 `define ADDR_BGP 16'hFF47
9 `define ADDR_OBP0 16'hFF48
10 `define ADDR_OBP1 16'hFF49
11 `define ADDR_WY 16'hFF4A
12 `define ADDR_WX 16'hFF4B
17 input clk, // 8MHz clock
20 output wire vblankirq,
21 output wire lcdclk, lcdvs, lcdhs,
22 output reg [2:0] lcdr, lcdg, output reg [1:0] lcdb);
24 /***** Needed prototypes *****/
27 /***** Internal clock that is stable and does not depend on CPU in single/double clock mode *****/
32 /***** LCD control registers *****/
33 reg [7:0] rLCDC = 8'h00;
34 reg [7:0] rSTAT = 8'h00;
35 reg [7:0] rSCY = 8'b00;
36 reg [7:0] rSCX = 8'b00;
37 reg [7:0] rLYC = 8'b00;
38 reg [7:0] rDMA = 8'b00;
39 reg [7:0] rBGP = 8'b00;
40 reg [7:0] rOBP0 = 8'b00;
41 reg [7:0] rOBP1 = 8'b00;
42 reg [7:0] rWY = 8'b00;
43 reg [7:0] rWX = 8'b00;
45 /***** Sync generation *****/
47 /* A complete cycle takes 456 clocks.
48 * VBlank lasts 4560 clocks (10 scanlines) -- LY = 144 - 153.
50 * Modes: 0 -> in hblank and OAM/VRAM available - present 207 clks
51 * 1 -> in vblank and OAM/VRAM available
52 * 2 -> OAM in use - present 86 clks
53 * 3 -> OAM/VRAM in use - present 163 clks
54 * So, X = 0~162 is HActive,
55 * X = 163-369 is HBlank,
56 * X = 370-455 is HWhirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr.
57 * [02:15:10] <Judge_> LY is updated near the 0 -> 2 transition
58 * [02:15:38] <Judge_> it seems to be updated internally first before it is visible in the LY register itself
59 * [02:15:40] <Judge_> some kind of delay
60 * [02:16:19] <Judge_> iirc it is updated about 4 cycles prior to mode 2
62 reg [8:0] posx = 9'h000;
63 reg [7:0] posy = 8'h00;
65 wire vraminuse = (posx < 163) && (posy < 144) && rLCDC[7];
66 wire oaminuse = (posx > 369) && (posy < 144) && rLCDC[7];
68 wire display = (posx > 2) && (posx < 163) && (posy < 144);
70 wire [1:0] mode = (posy < 144) ?
76 wire [7:0] vxpos = rSCX + posx - 3;
77 wire [7:0] vypos = rSCY + posy;
79 assign lcdvs = (posy == 153) && (posx == 2) && rLCDC[7];
80 assign lcdhs = (posx == 2) && rLCDC[7];
83 wire [2:0] lcdr_ = display ? {pixdata[1] ? 3'b111 : 3'b000} : 3'b000;
84 wire [2:0] lcdg_ = display ? {pixdata[0] ? 3'b111 : 3'b000} : 3'b000;
85 wire [1:0] lcdb_ = display ? {(vypos < 8 || vxpos < 8) ? 2'b11 : 2'b00} : 2'b00;
87 reg mode00irq = 0, mode01irq = 0, mode10irq = 0, lycirq = 0;
88 assign lcdcirq = (rSTAT[3] & mode00irq) | (rSTAT[4] & mode01irq) | (rSTAT[5] & mode10irq) | (rSTAT[6] & lycirq);
89 assign vblankirq = (posx == 0 && posy == 153);
91 always @(negedge clk4)
93 if (posx == 455) begin
95 if (posy == 153) begin
101 /* Check for vblank and generate an IRQ if needed. */
102 if (posy == 143) begin
105 if ((posy + 1) == rLYC)
113 else if (posx == 373)
128 /***** Video RAM *****/
131 * Tile data from 8000-8FFF or 8800-97FF
132 * Background tile maps 9800-9BFF or 9C00-9FFF
134 reg [7:0] tiledatahigh [3071:0];
135 reg [7:0] tiledatalow [3071:0];
136 reg [7:0] bgmap1 [1023:0];
137 reg [7:0] bgmap2 [1023:0];
139 // Upper five bits are Y coord, lower five bits are X coord
140 // The new tile number is loaded when vxpos[2:0] is 3'b110
141 // The new tile data is loaded when vxpos[2:0] is 3'b111
142 // The new tile data is latched and ready when vxpos[2:0] is 3'b000!
143 wire [7:0] vxpos_ = vxpos + 1;
144 wire [9:0] bgmapaddr = {vypos[7:3], vxpos_[7:3]};
146 wire [10:0] tileaddr = {tileno, vypos[2:0]};
147 reg [7:0] tilehigh, tilelow;
148 wire [1:0] prepal = {tilehigh[7-vxpos[2:0]], tilelow[7-vxpos[2:0]]};
149 assign pixdata = {rBGP[{prepal,1'b1}],rBGP[{prepal,1'b0}]};
151 wire decode_tiledata = (addr >= 16'h8000) && (addr <= 16'h97FF);
152 wire decode_bgmap1 = (addr >= 16'h9800) && (addr <= 16'h9BFF);
154 wire [9:0] bgmapaddr_in = vraminuse ? bgmapaddr : addr[9:0];
155 wire [11:0] tileaddr_in = vraminuse ? tileaddr : addr[12:1];
157 always @(posedge clk)
158 if ((vraminuse && ((posx == 2) || (vxpos[2:0] == 3'b111))) || decode_bgmap1) begin
159 tileno <= bgmap1[bgmapaddr_in];
160 if (wr && decode_bgmap1 && ~vraminuse)
161 bgmap1[bgmapaddr_in] <= data;
164 always @(posedge clk)
165 if ((vraminuse && ((posx == 3) || (vxpos[2:0] == 3'b000))) || decode_tiledata) begin
166 tilehigh <= tiledatahigh[tileaddr_in];
167 tilelow <= tiledatalow[tileaddr_in];
168 if (wr && addr[0] && decode_tiledata && ~vraminuse)
169 tiledatahigh[tileaddr_in] <= data;
170 if (wr && ~addr[0] && decode_tiledata && ~vraminuse)
171 tiledatalow[tileaddr_in] <= data;
174 /***** Bus interface *****/
176 ((addr == `ADDR_LCDC) ? rLCDC :
177 (addr == `ADDR_STAT) ? {rSTAT[7:3], (rLYC == posy) ? 1'b1 : 1'b0, mode} :
178 (addr == `ADDR_SCY) ? rSCY :
179 (addr == `ADDR_SCX) ? rSCX :
180 (addr == `ADDR_LY) ? posy :
181 (addr == `ADDR_LYC) ? rLYC :
182 (addr == `ADDR_BGP) ? rBGP :
183 (addr == `ADDR_OBP0) ? rOBP0 :
184 (addr == `ADDR_OBP1) ? rOBP1 :
185 (addr == `ADDR_WY) ? rWY :
186 (addr == `ADDR_WX) ? rWX :
187 (decode_tiledata && addr[0]) ? tilehigh :
188 (decode_tiledata && ~addr[0]) ? tilelow :
189 (decode_bgmap1) ? tileno :
193 always @(posedge clk)
197 `ADDR_LCDC: rLCDC <= data;
198 `ADDR_STAT: rSTAT <= {data[7:2],rSTAT[1:0]};
199 `ADDR_SCY: rSCY <= data;
200 `ADDR_SCX: rSCX <= data;
201 `ADDR_LYC: rLYC <= data;
202 `ADDR_DMA: rDMA <= data;
203 `ADDR_BGP: rBGP <= data;
204 `ADDR_OBP0: rOBP0 <= data;
205 `ADDR_OBP1: rOBP1 <= data;
206 `ADDR_WY: rWY <= data;
207 `ADDR_WX: rWX <= data;