14 `define _A registers[`REG_A]
15 `define _B registers[`REG_B]
16 `define _C registers[`REG_C]
17 `define _D registers[`REG_D]
18 `define _E registers[`REG_E]
19 `define _F registers[`REG_F]
20 `define _H registers[`REG_H]
21 `define _L registers[`REG_L]
22 `define _SPH registers[`REG_SPH]
23 `define _SPL registers[`REG_SPL]
24 `define _PCH registers[`REG_PCH]
25 `define _PCL registers[`REG_PCL]
26 `define _AF {`_A, `_F}
27 `define _BC {`_B, `_C}
28 `define _DE {`_D, `_E}
29 `define _HL {`_H, `_L}
30 `define _SP {`_SPH, `_SPL}
31 `define _PC {`_PCH, `_PCL}
33 `define FLAG_Z 8'b10000000
34 `define FLAG_N 8'b01000000
35 `define FLAG_H 8'b00100000
36 `define FLAG_C 8'b00010000
38 `define STATE_FETCH 2'h0
39 `define STATE_DECODE 2'h1
40 `define STATE_EXECUTE 2'h2
41 `define STATE_WRITEBACK 2'h3
43 `define INSN_LD_reg_imm8 9'b000xxx110
44 `define INSN_HALT 9'b001110110
45 `define INSN_LD_HL_reg 9'b001110xxx
46 `define INSN_LD_reg_HL 9'b001xxx110
47 `define INSN_LD_reg_reg 9'b001xxxxxx
48 `define INSN_LD_reg_imm16 9'b000xx0001
49 `define INSN_LD_SP_HL 9'b011111001
50 `define INSN_PUSH_reg 9'b011xx0101
51 `define INSN_POP_reg 9'b011xx0001
52 `define INSN_LDH_AC 9'b0111x0010 // Either LDH A,(C) or LDH (C),A
53 `define INSN_LDx_AHL 9'b0001xx010 // LDD/LDI A,(HL) / (HL),A
54 `define INSN_ALU8 9'b010xxxxxx // 10 xxx yyy
55 `define INSN_ALU8IMM 9'b011xxx110
56 `define INSN_NOP 9'b000000000
57 `define INSN_RST 9'b011xxx111
58 `define INSN_RET 9'b0110x1001 // 1 = RETI, 0 = RET
59 `define INSN_RETCC 9'b0110xx000
60 `define INSN_CALL 9'b011001101
61 `define INSN_CALLCC 9'b0110xx100 // Not that call/cc.
62 `define INSN_JP_imm 9'b011000011
63 `define INSN_JPCC_imm 9'b0110xx010
64 `define INSN_ALU_A 9'b000xxx111
65 `define INSN_JP_HL 9'b011101001
66 `define INSN_JR_imm 9'b000011000
67 `define INSN_JRCC_imm 9'b0001xx000
68 `define INSN_INCDEC16 9'b000xxx011
69 `define INSN_VOP_INTR 9'b011111100 // 0xFC is grabbed by the fetch if there is an interrupt pending.
70 `define INSN_DI 9'b011110011
71 `define INSN_EI 9'b011111011
72 `define INSN_INCDEC_HL 9'b00011010x
73 `define INSN_INCDEC_reg8 9'b000xxx10x
74 `define INSN_LD8M_A 9'b0111x0000 // 1111 for ld A, x; 1110 for ld x, A; bit 1 specifies 16m8 or 8m8
75 `define INSN_LD16M_A 9'b0111x1010 // 1111 for ld A, x; 1110 for ld x, A; bit 1 specifies 16m8 or 8m8
76 `define INSN_LDBCDE_A 9'b0000xx010
77 `define INSN_TWO_BYTE 9'b011001011 // prefix for two-byte opqodes
78 `define INSN_ALU_EXT 9'b100xxxxxx
79 `define INSN_BIT 9'b101xxxxxx
80 `define INSN_RES 9'b110xxxxxx
81 `define INSN_SET 9'b111xxxxxx
83 `define INSN_cc_NZ 2'b00
84 `define INSN_cc_Z 2'b01
85 `define INSN_cc_NC 2'b10
86 `define INSN_cc_C 2'b11
88 `define INSN_reg_A 3'b111
89 `define INSN_reg_B 3'b000
90 `define INSN_reg_C 3'b001
91 `define INSN_reg_D 3'b010
92 `define INSN_reg_E 3'b011
93 `define INSN_reg_H 3'b100
94 `define INSN_reg_L 3'b101
95 `define INSN_reg_dHL 3'b110
96 `define INSN_reg16_BC 2'b00
97 `define INSN_reg16_DE 2'b01
98 `define INSN_reg16_HL 2'b10
99 `define INSN_reg16_SP 2'b11
100 `define INSN_stack_AF 2'b11
101 `define INSN_stack_BC 2'b00
102 `define INSN_stack_DE 2'b01
103 `define INSN_stack_HL 2'b10
104 `define INSN_alu_ADD 3'b000
105 `define INSN_alu_ADC 3'b001
106 `define INSN_alu_SUB 3'b010
107 `define INSN_alu_SBC 3'b011
108 `define INSN_alu_AND 3'b100
109 `define INSN_alu_XOR 3'b101
110 `define INSN_alu_OR 3'b110
111 `define INSN_alu_CP 3'b111 // Oh lawd, is dat some CP?
112 `define INSN_alu_RLCA 3'b000
113 `define INSN_alu_RRCA 3'b001
114 `define INSN_alu_RLA 3'b010
115 `define INSN_alu_RRA 3'b011
116 `define INSN_alu_DAA 3'b100
117 `define INSN_alu_CPL 3'b101
118 `define INSN_alu_SCF 3'b110
119 `define INSN_alu_CCF 3'b111
120 `define INSN_alu_RLC 3'b000
121 `define INSN_alu_RRC 3'b001
122 `define INSN_alu_RL 3'b010
123 `define INSN_alu_RR 3'b011
124 `define INSN_alu_DA_SLA 3'b100
125 `define INSN_alu_CPL_SRA 3'b101
126 `define INSN_alu_SCF_SWAP 3'b110
127 `define INSN_alu_CCF_SRL 3'b111
129 `define EXEC_INC_PC `_PC <= `_PC + 1;
130 `define EXEC_NEXTADDR_PCINC address <= `_PC + 1;
131 `define EXEC_NEWCYCLE begin newcycle <= 1; rd <= 1; wr <= 0; end
132 `define EXEC_NEWCYCLE_TWOBYTE begin newcycle <= 1; rd <= 1; wr <= 0; twobyte <= 1; end
133 `define EXEC_WRITE(ad, da) begin address <= (ad); wdata <= (da); wr <= 1; end end
134 `define EXEC_READ(ad) begin address <= (ad); rd <= 1; end end
138 output reg [15:0] busaddress, /* BUS_* is latched on STATE_FETCH. */
140 output reg buswr, output reg busrd,
141 input irq, input [7:0] jaddr,
142 output reg [1:0] state);
144 // reg [1:0] state; /* State within this bus cycle (see STATE_*). */
145 reg [2:0] cycle; /* Cycle for instructions. */
147 reg [7:0] registers[11:0];
149 reg [15:0] address; /* Address for the next bus operation. */
151 reg [8:0] opcode; /* Opcode from the current machine cycle. */
153 reg [7:0] rdata, wdata; /* Read data from this bus cycle, or write data for the next. */
154 reg rd, wr, newcycle, twobyte;
156 reg [7:0] tmp, tmp2; /* Generic temporary regs. */
159 assign busdata = buswr ? buswdata : 8'bzzzzzzzz;
163 wire [7:0] rlc,rrc,rl,rr,sla,sra,swap,srl;
164 wire [3:0] rlcf,rrcf,rlf,rrf,slaf,sraf,swapf,srlf;
168 assign rlc = {tmp[6:0],tmp[7]};
169 assign rlcf = {(tmp == 0 ? 1'b1 : 1'b0)
173 assign rrc = {tmp[0],tmp[7:1]};
174 assign rrcf = {(tmp == 0 ? 1'b1 : 1'b0),
178 assign rl = {tmp[6:0],`_F[4]};
179 assign rlf = {({tmp[6:0],`_F[4]} == 0 ? 1'b1 : 1'b0),
183 assign rr = {`_F[4],tmp[7:1]};
184 assign rrf = {({tmp[4],tmp[7:1]} == 0 ? 1'b1 : 1'b0),
188 assign sla = {tmp[6:0],0};
189 assign slaf = {(tmp[6:0] == 0 ? 1'b1 : 1'b0),
193 assign sra = {tmp[7],tmp[7:1]};
194 // assign sraf = {(tmp[7:1] == 0 ? 1'b1 : 1'b0),2'b0,tmp[0]}; now in assign srlf =
196 assign swap = {tmp[3:0],tmp[7:4]};
197 assign swapf = {(tmp == 0 ? 1'b1 : 1'b0),
200 assign srl = {0,tmp[7:1]};
201 assign srlf = {(tmp[7:1] == 0 ? 1'b1 : 1'b0),
207 assign {alu_res,f_res} =
210 opcode[3] ? {srl,srlf} : {swap,swapf}
212 opcode[3] ? {sra,sraf} : {sla,slaf}
216 opcode[3] ? {rr,rrf} : {rl,rlf}
218 opcode[3] ? {rrc,rrcf} : {rlc,rlcf}
246 state <= `STATE_WRITEBACK;
251 always @(posedge clk)
259 busaddress <= address;
265 state <= `STATE_DECODE;
270 opcode <= {1,busdata};
272 end else if (ie && irq)
273 opcode <= `INSN_VOP_INTR;
275 opcode <= {0,busdata};
280 if (rd) rdata <= busdata;
291 address <= 16'bxxxxxxxxxxxxxxxx; // Make it obvious if something of type has happened.
292 wdata <= 8'bxxxxxxxx;
293 state <= `STATE_EXECUTE;
295 `STATE_EXECUTE: begin
298 `include "allinsns.v"
303 state <= `STATE_WRITEBACK;
305 `STATE_WRITEBACK: begin
308 `include "allinsns.v"
313 state <= `STATE_FETCH;