]> Joshua Wise's Git repositories - fpgaboy.git/blob - LCDC.v
444fb85b02792a7055e84f49fe356b87e2563654
[fpgaboy.git] / LCDC.v
1 `define ADDR_LCDC       16'hFF40
2 `define ADDR_STAT       16'hFF41
3 `define ADDR_SCY        16'hFF42
4 `define ADDR_SCX        16'hFF43
5 `define ADDR_LY         16'hFF44
6 `define ADDR_LYC        16'hFF45
7 `define ADDR_DMA        16'hFF46
8 `define ADDR_BGP        16'hFF47
9 `define ADDR_OBP0       16'hFF48
10 `define ADDR_OBP1       16'hFF49
11 `define ADDR_WY         16'hFF4A
12 `define ADDR_WX         16'hFF4B
13
14 module LCDC(
15         input [15:0] addr,
16         inout [7:0] data,
17         input clk,      // 8MHz clock
18         input wr, rd,
19         output wire lcdcirq,
20         output wire vblankirq,
21         output wire lcdclk, lcdvs, lcdhs,
22         output wire [2:0] lcdr, lcdg, output wire [1:0] lcdb);
23         
24         /***** Internal clock that is stable and does not depend on CPU in single/double clock mode *****/
25         reg clk4 = 0;
26         always @(posedge clk)
27                 clk4 = ~clk4;
28         assign lcdclk = clk4;
29         
30         /***** Video RAM *****/
31         /* Base is 0x8000
32          *
33          * Tile data from 8000-8FFF or 8800-97FF
34          * Background tile maps 9800-9BFF or 9C00-9FFF
35          */
36         reg [7:0] tiledata [6143:0];
37         reg [7:0] bgmap1 [1023:0];
38         reg [7:0] bgmap2 [1023:0];
39         
40         /***** LCD control registers *****/
41         reg [7:0] rLCDC = 8'h91;
42         reg [7:0] rSTAT = 8'h00;
43         reg [7:0] rSCY = 8'b00;
44         reg [7:0] rSCX = 8'b00;
45         reg [7:0] rLYC = 8'b00;
46         reg [7:0] rDMA = 8'b00;
47         reg [7:0] rBGP = 8'b00;
48         reg [7:0] rOBP0 = 8'b00;
49         reg [7:0] rOBP1 = 8'b00;
50         reg [7:0] rWY = 8'b00;
51         reg [7:0] rWX = 8'b00;
52         
53         /***** Sync generation *****/
54         
55         /* A complete cycle takes 456 clocks.
56          * VBlank lasts 4560 clocks (10 scanlines) -- LY = 144 - 153.
57          *
58          * Modes: 0 -> in hblank and OAM/VRAM available - present 207 clks
59          *        1 -> in vblank and OAM/VRAM available
60          *        2 -> OAM in use - present 83 clks
61          *        3 -> OAM/VRAM in use - present 166 clks
62          * So, X = 0~165 is HActive,
63          * X = 166-372 is HBlank,
64          * X = 373-455 is HWhirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr.
65          * [02:15:10] <Judge_> LY is updated near the 0 -> 2 transition
66          * [02:15:38] <Judge_> it seems to be updated internally first before it is visible in the LY register itself
67          * [02:15:40] <Judge_> some kind of delay
68          * [02:16:19] <Judge_> iirc it is updated about 4 cycles prior to mode 2
69          */
70         reg [8:0] posx = 9'h000;
71         reg [7:0] posy = 8'h00;
72         wire [1:0] mode = (posy < 144) ?
73                                 ((posx < 166) ? 2'b11 :
74                                  (posx < 373) ? 2'b00 :
75                                  2'b10)
76                                 : 2'b01;
77         
78         assign lcdvs = (posy == 153) && (posx == 455);
79         assign lcdhs = (posx == 455);
80         assign lcdr = (posx < 160) && (posy < 144) ? {posy == rLYC ? 3'b111 : 3'b000} : 3'b000;
81         assign lcdg = (posx < 160) && (posy < 144) ? {posy < rSCY ? 3'b111 : 3'b000} : 3'b000;
82         assign lcdb = (posx < 160) && (posy < 144) ? {2'b11} : 2'b00;
83         
84         reg mode00irq = 0, mode01irq = 0, mode10irq = 0, lycirq = 0;
85         assign lcdcirq = (rSTAT[3] & mode00irq) | (rSTAT[4] & mode01irq) | (rSTAT[5] & mode10irq) | (rSTAT[6] & lycirq);
86         assign vblankirq = (posx == 0 && posy == 153);
87         
88         always @(posedge clk4)
89         begin
90                 if (posx == 455) begin
91                         posx <= 0;
92                         if (posy == 153) begin
93                                 posy <= 0;
94                                 if (0 == rLYC)
95                                         lycirq <= 1;
96                         end else begin
97                                 posy <= posy + 1;
98                                 /* Check for vblank and generate an IRQ if needed. */
99                                 if (posy == 143) begin 
100                                         mode01irq <= 1;
101                                 end
102                                 if ((posy + 1) == rLYC)
103                                         lycirq <= 1;
104                                 
105                         end
106                 end else begin
107                         posx <= posx + 1;
108                         if (posx == 165)
109                                 mode00irq <= 1;
110                         else if (posx == 373)
111                                 mode10irq <= 1;
112                         else begin
113                                 mode00irq <= 0;
114                                 mode01irq <= 0;
115                                 mode10irq <= 0;
116                         end
117                         lycirq <= 0;
118                 end
119                 
120         end
121   
122         /***** Bus interface *****/
123         assign data = rd ?
124                         (addr == `ADDR_LCDC) ? rLCDC :
125                         (addr == `ADDR_STAT) ? {rSTAT[7:3], (rLYC == posy) ? 1'b1 : 1'b0, mode} :
126                         (addr == `ADDR_SCY) ? rSCY :
127                         (addr == `ADDR_SCX) ? rSCX :
128                         (addr == `ADDR_LY) ? posy :
129                         (addr == `ADDR_LYC) ? rLYC :
130                         (addr == `ADDR_BGP) ? rBGP :
131                         (addr == `ADDR_OBP0) ? rOBP0 :
132                         (addr == `ADDR_OBP1) ? rOBP1 :
133                         (addr == `ADDR_WY) ? rWY :
134                         (addr == `ADDR_WX) ? rWX :
135                         8'bzzzzzzzz :
136                 8'bzzzzzzzz;
137   
138         always @(negedge clk)
139         begin
140                 if (wr)
141                         case (addr)
142                         `ADDR_LCDC:     rLCDC <= data;
143                         `ADDR_STAT:     rSTAT <= {data[7:2],rSTAT[1:0]};
144                         `ADDR_SCY:      rSCY <= data;
145                         `ADDR_SCX:      rSCX <= data;
146                         `ADDR_LYC:      rLYC <= data;
147                         `ADDR_DMA:      rDMA <= data;
148                         `ADDR_BGP:      rBGP <= data;
149                         `ADDR_OBP0:     rOBP0 <= data;
150                         `ADDR_OBP1:     rOBP1 <= data;
151                         `ADDR_WY:       rWY <= data;
152                         `ADDR_WX:       rWX <= data;
153                         endcase
154         end
155 endmodule
This page took 0.027934 seconds and 2 git commands to generate.