]>
Commit | Line | Data |
---|---|---|
1 | `define ADDR_LCDC 16'hFF40 | |
2 | `define ADDR_STAT 16'hFF41 | |
3 | `define ADDR_SCY 16'hFF42 | |
4 | `define ADDR_SCX 16'hFF43 | |
5 | `define ADDR_LY 16'hFF44 | |
6 | `define ADDR_LYC 16'hFF45 | |
7 | `define ADDR_DMA 16'hFF46 | |
8 | `define ADDR_BGP 16'hFF47 | |
9 | `define ADDR_OBP0 16'hFF48 | |
10 | `define ADDR_OBP1 16'hFF49 | |
11 | `define ADDR_WY 16'hFF4A | |
12 | `define ADDR_WX 16'hFF4B | |
13 | ||
14 | module LCDC( | |
15 | input [15:0] addr, | |
16 | inout [7:0] data, | |
17 | input clk, // 8MHz clock | |
18 | input wr, rd, | |
19 | output wire lcdcirq, | |
20 | output wire vblankirq, | |
21 | output wire lcdclk, lcdvs, lcdhs, | |
22 | output reg [2:0] lcdr, lcdg, output reg [1:0] lcdb); | |
23 | ||
24 | /***** Bus latches *****/ | |
25 | reg rdlatch = 0; | |
26 | reg [15:0] addrlatch = 0; | |
27 | ||
28 | /***** Needed prototypes *****/ | |
29 | wire [1:0] pixdata; | |
30 | ||
31 | /***** Internal clock that is stable and does not depend on CPU in single/double clock mode *****/ | |
32 | reg clk4 = 0; | |
33 | always @(posedge clk) | |
34 | clk4 <= ~clk4; | |
35 | ||
36 | /***** LCD control registers *****/ | |
37 | reg [7:0] rLCDC = 8'h00; | |
38 | reg [7:0] rSTAT = 8'h00; | |
39 | reg [7:0] rSCY = 8'b00; | |
40 | reg [7:0] rSCX = 8'b00; | |
41 | reg [7:0] rLYC = 8'b00; | |
42 | reg [7:0] rDMA = 8'b00; | |
43 | reg [7:0] rBGP = 8'b00; | |
44 | reg [7:0] rOBP0 = 8'b00; | |
45 | reg [7:0] rOBP1 = 8'b00; | |
46 | reg [7:0] rWY = 8'b00; | |
47 | reg [7:0] rWX = 8'b00; | |
48 | ||
49 | /***** Sync generation *****/ | |
50 | ||
51 | /* A complete cycle takes 456 clocks. | |
52 | * VBlank lasts 4560 clocks (10 scanlines) -- LY = 144 - 153. | |
53 | * | |
54 | * Modes: 0 -> in hblank and OAM/VRAM available - present 207 clks | |
55 | * 1 -> in vblank and OAM/VRAM available | |
56 | * 2 -> OAM in use - present 86 clks | |
57 | * 3 -> OAM/VRAM in use - present 163 clks | |
58 | * So, X = 0~162 is HActive, | |
59 | * X = 163-369 is HBlank, | |
60 | * X = 370-455 is HWhirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr. | |
61 | * [02:15:10] <Judge_> LY is updated near the 0 -> 2 transition | |
62 | * [02:15:38] <Judge_> it seems to be updated internally first before it is visible in the LY register itself | |
63 | * [02:15:40] <Judge_> some kind of delay | |
64 | * [02:16:19] <Judge_> iirc it is updated about 4 cycles prior to mode 2 | |
65 | */ | |
66 | reg [8:0] posx = 9'h000; | |
67 | reg [7:0] posy = 8'h00; | |
68 | ||
69 | wire vraminuse = (posx < 163) && (posy < 144) && rLCDC[7]; | |
70 | wire oaminuse = (posx > 369) && (posy < 144) && rLCDC[7]; | |
71 | ||
72 | wire display = (posx > 2) && (posx < 163) && (posy < 144); | |
73 | ||
74 | wire [1:0] mode = (posy < 144) ? | |
75 | (vraminuse ? 2'b11 : | |
76 | oaminuse ? 2'b10 : | |
77 | 2'b00) | |
78 | : 2'b01; | |
79 | ||
80 | wire [7:0] vxpos = rSCX + posx - 3; | |
81 | wire [7:0] vypos = rSCY + posy; | |
82 | ||
83 | assign lcdvs = (posy == 153) && (posx == 2) && rLCDC[7]; | |
84 | assign lcdhs = (posx == 2) && rLCDC[7]; | |
85 | assign lcdclk = clk4; | |
86 | ||
87 | wire [2:0] lcdr_ = display ? {pixdata[1] ? 3'b111 : 3'b000} : 3'b000; | |
88 | wire [2:0] lcdg_ = display ? {pixdata[0] ? 3'b111 : 3'b000} : 3'b000; | |
89 | wire [1:0] lcdb_ = display ? {(vypos < 8 || vxpos < 8) ? 2'b11 : 2'b00} : 2'b00; | |
90 | ||
91 | reg mode00irq = 0, mode01irq = 0, mode10irq = 0, lycirq = 0; | |
92 | assign lcdcirq = (rSTAT[3] & mode00irq) | (rSTAT[4] & mode01irq) | (rSTAT[5] & mode10irq) | (rSTAT[6] & lycirq); | |
93 | assign vblankirq = (posx == 0 && posy == 153); | |
94 | ||
95 | always @(posedge clk4) | |
96 | begin | |
97 | if (posx == 455) begin | |
98 | posx <= 0; | |
99 | if (posy == 153) begin | |
100 | posy <= 0; | |
101 | if (0 == rLYC) | |
102 | lycirq <= 1; | |
103 | end else begin | |
104 | posy <= posy + 1; | |
105 | /* Check for vblank and generate an IRQ if needed. */ | |
106 | if (posy == 143) begin | |
107 | mode01irq <= 1; | |
108 | end | |
109 | if ((posy + 1) == rLYC) | |
110 | lycirq <= 1; | |
111 | ||
112 | end | |
113 | end else begin | |
114 | posx <= posx + 1; | |
115 | if (posx == 165) | |
116 | mode00irq <= 1; | |
117 | else if (posx == 373) | |
118 | mode10irq <= 1; | |
119 | else begin | |
120 | mode00irq <= 0; | |
121 | mode01irq <= 0; | |
122 | mode10irq <= 0; | |
123 | end | |
124 | lycirq <= 0; | |
125 | end | |
126 | ||
127 | lcdr <= lcdr_; | |
128 | lcdg <= lcdg_; | |
129 | lcdb <= lcdb_; | |
130 | end | |
131 | ||
132 | /***** Video RAM *****/ | |
133 | /* Base is 0x8000 | |
134 | * | |
135 | * Tile data from 8000-8FFF or 8800-97FF | |
136 | * Background tile maps 9800-9BFF or 9C00-9FFF | |
137 | */ | |
138 | reg [7:0] tiledatahigh [3071:0]; | |
139 | reg [7:0] tiledatalow [3071:0]; | |
140 | reg [7:0] bgmap1 [1023:0]; | |
141 | reg [7:0] bgmap2 [1023:0]; | |
142 | ||
143 | // Upper five bits are Y coord, lower five bits are X coord | |
144 | // The new tile number is loaded when vxpos[2:0] is 3'b110 | |
145 | // The new tile data is loaded when vxpos[2:0] is 3'b111 | |
146 | // The new tile data is latched and ready when vxpos[2:0] is 3'b000! | |
147 | wire [7:0] vxpos_ = vxpos + 1; | |
148 | wire [9:0] bgmapaddr = {vypos[7:3], vxpos_[7:3]}; | |
149 | reg [7:0] tileno; | |
150 | wire [10:0] tileaddr = {tileno, vypos[2:0]}; | |
151 | reg [7:0] tilehigh, tilelow; | |
152 | wire [1:0] prepal = {tilehigh[7-vxpos[2:0]], tilelow[7-vxpos[2:0]]}; | |
153 | assign pixdata = {rBGP[{prepal,1'b1}],rBGP[{prepal,1'b0}]}; | |
154 | ||
155 | wire decode_tiledata = (addr >= 16'h8000) && (addr <= 16'h97FF); | |
156 | wire decode_bgmap1 = (addr >= 16'h9800) && (addr <= 16'h9BFF); | |
157 | ||
158 | wire [9:0] bgmapaddr_in = vraminuse ? bgmapaddr : addr[9:0]; | |
159 | wire [11:0] tileaddr_in = vraminuse ? tileaddr : addr[12:1]; | |
160 | ||
161 | always @(posedge clk) | |
162 | begin | |
163 | if ((vraminuse && ((posx == 2) || (vxpos[2:0] == 3'b111))) || decode_bgmap1) begin | |
164 | tileno <= bgmap1[bgmapaddr_in]; | |
165 | if (wr && decode_bgmap1 && ~vraminuse) | |
166 | bgmap1[bgmapaddr_in] <= data; | |
167 | end | |
168 | if ((vraminuse && ((posx == 3) || (vxpos[2:0] == 3'b000))) || decode_tiledata) begin | |
169 | tilehigh <= tiledatahigh[tileaddr_in]; | |
170 | tilelow <= tiledatalow[tileaddr_in]; | |
171 | if (wr && addr[0] && decode_tiledata && ~vraminuse) | |
172 | tiledatahigh[tileaddr_in] <= data; | |
173 | if (wr && ~addr[0] && decode_tiledata && ~vraminuse) | |
174 | tiledatalow[tileaddr_in] <= data; | |
175 | end | |
176 | end | |
177 | ||
178 | /***** Bus interface *****/ | |
179 | assign data = rdlatch ? | |
180 | ((addrlatch == `ADDR_LCDC) ? rLCDC : | |
181 | (addrlatch == `ADDR_STAT) ? {rSTAT[7:3], (rLYC == posy) ? 1'b1 : 1'b0, mode} : | |
182 | (addrlatch == `ADDR_SCY) ? rSCY : | |
183 | (addrlatch == `ADDR_SCX) ? rSCX : | |
184 | (addrlatch == `ADDR_LY) ? posy : | |
185 | (addrlatch == `ADDR_LYC) ? rLYC : | |
186 | (addrlatch == `ADDR_BGP) ? rBGP : | |
187 | (addrlatch == `ADDR_OBP0) ? rOBP0 : | |
188 | (addrlatch == `ADDR_OBP1) ? rOBP1 : | |
189 | (addrlatch == `ADDR_WY) ? rWY : | |
190 | (addrlatch == `ADDR_WX) ? rWX : | |
191 | (decode_tiledata && addrlatch[0]) ? tilehigh : | |
192 | (decode_tiledata && ~addrlatch[0]) ? tilelow : | |
193 | (decode_bgmap1) ? tileno : | |
194 | 8'bzzzzzzzz) : | |
195 | 8'bzzzzzzzz; | |
196 | ||
197 | always @(posedge clk) | |
198 | begin | |
199 | rdlatch <= rd; | |
200 | addrlatch <= addr; | |
201 | if (wr) | |
202 | case (addr) | |
203 | `ADDR_LCDC: rLCDC <= data; | |
204 | `ADDR_STAT: rSTAT <= {data[7:2],rSTAT[1:0]}; | |
205 | `ADDR_SCY: rSCY <= data; | |
206 | `ADDR_SCX: rSCX <= data; | |
207 | `ADDR_LYC: rLYC <= data; | |
208 | `ADDR_DMA: rDMA <= data; | |
209 | `ADDR_BGP: rBGP <= data; | |
210 | `ADDR_OBP0: rOBP0 <= data; | |
211 | `ADDR_OBP1: rOBP1 <= data; | |
212 | `ADDR_WY: rWY <= data; | |
213 | `ADDR_WX: rWX <= data; | |
214 | endcase | |
215 | end | |
216 | endmodule |