]>
Commit | Line | Data |
---|---|---|
1 | `define ADDR_LCDC 16'hFF40 | |
2 | `define ADDR_STAT 16'hFF41 | |
3 | `define ADDR_SCY 16'hFF42 | |
4 | `define ADDR_SCX 16'hFF43 | |
5 | `define ADDR_LY 16'hFF44 | |
6 | `define ADDR_LYC 16'hFF45 | |
7 | `define ADDR_DMA 16'hFF46 | |
8 | `define ADDR_BGP 16'hFF47 | |
9 | `define ADDR_OBP0 16'hFF48 | |
10 | `define ADDR_OBP1 16'hFF49 | |
11 | `define ADDR_WY 16'hFF4A | |
12 | `define ADDR_WX 16'hFF4B | |
13 | ||
14 | module LCDC( | |
15 | input [15:0] addr, | |
16 | inout [7:0] data, | |
17 | input clk, // 8MHz clock | |
18 | input wr, rd, | |
19 | output wire lcdcirq, | |
20 | output wire vblankirq, | |
21 | output wire lcdclk, lcdvs, lcdhs, | |
22 | output wire [2:0] lcdr, lcdg, output wire [1:0] lcdb); | |
23 | ||
24 | /***** Needed prototypes *****/ | |
25 | wire [1:0] pixdata; | |
26 | ||
27 | /***** Internal clock that is stable and does not depend on CPU in single/double clock mode *****/ | |
28 | reg clk4 = 0; | |
29 | always @(posedge clk) | |
30 | clk4 = ~clk4; | |
31 | assign lcdclk = clk4; | |
32 | ||
33 | /***** LCD control registers *****/ | |
34 | reg [7:0] rLCDC = 8'h91; | |
35 | reg [7:0] rSTAT = 8'h00; | |
36 | reg [7:0] rSCY = 8'b00; | |
37 | reg [7:0] rSCX = 8'b00; | |
38 | reg [7:0] rLYC = 8'b00; | |
39 | reg [7:0] rDMA = 8'b00; | |
40 | reg [7:0] rBGP = 8'b00; | |
41 | reg [7:0] rOBP0 = 8'b00; | |
42 | reg [7:0] rOBP1 = 8'b00; | |
43 | reg [7:0] rWY = 8'b00; | |
44 | reg [7:0] rWX = 8'b00; | |
45 | ||
46 | /***** Sync generation *****/ | |
47 | ||
48 | /* A complete cycle takes 456 clocks. | |
49 | * VBlank lasts 4560 clocks (10 scanlines) -- LY = 144 - 153. | |
50 | * | |
51 | * Modes: 0 -> in hblank and OAM/VRAM available - present 207 clks | |
52 | * 1 -> in vblank and OAM/VRAM available | |
53 | * 2 -> OAM in use - present 86 clks | |
54 | * 3 -> OAM/VRAM in use - present 163 clks | |
55 | * So, X = 0~162 is HActive, | |
56 | * X = 163-369 is HBlank, | |
57 | * X = 370-455 is HWhirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr. | |
58 | * [02:15:10] <Judge_> LY is updated near the 0 -> 2 transition | |
59 | * [02:15:38] <Judge_> it seems to be updated internally first before it is visible in the LY register itself | |
60 | * [02:15:40] <Judge_> some kind of delay | |
61 | * [02:16:19] <Judge_> iirc it is updated about 4 cycles prior to mode 2 | |
62 | */ | |
63 | reg [8:0] posx = 9'h000; | |
64 | reg [7:0] posy = 8'h00; | |
65 | ||
66 | wire vraminuse = (posx < 163); | |
67 | wire oaminuse = (posx > 369); | |
68 | ||
69 | wire display = (posx > 2) && (posx < 163) && (posy < 144); | |
70 | ||
71 | wire [1:0] mode = (posy < 144) ? | |
72 | (vraminuse ? 2'b11 : | |
73 | oaminuse ? 2'b10 : | |
74 | 2'b00) | |
75 | : 2'b01; | |
76 | ||
77 | assign lcdvs = (posy == 153) && (posx == 455); | |
78 | assign lcdhs = (posx == 455); | |
79 | assign lcdr = display ? {pixdata[1] ? 3'b111 : 3'b000} : 3'b000; | |
80 | assign lcdg = display ? {pixdata[0] ? 3'b111 : 3'b000} : 3'b000; | |
81 | assign lcdb = display ? {posy < rSCY ? 2'b11 : 2'b00} : 2'b00; | |
82 | ||
83 | reg mode00irq = 0, mode01irq = 0, mode10irq = 0, lycirq = 0; | |
84 | assign lcdcirq = (rSTAT[3] & mode00irq) | (rSTAT[4] & mode01irq) | (rSTAT[5] & mode10irq) | (rSTAT[6] & lycirq); | |
85 | assign vblankirq = (posx == 0 && posy == 153); | |
86 | ||
87 | always @(posedge clk4) | |
88 | begin | |
89 | if (posx == 455) begin | |
90 | posx <= 0; | |
91 | if (posy == 153) begin | |
92 | posy <= 0; | |
93 | if (0 == rLYC) | |
94 | lycirq <= 1; | |
95 | end else begin | |
96 | posy <= posy + 1; | |
97 | /* Check for vblank and generate an IRQ if needed. */ | |
98 | if (posy == 143) begin | |
99 | mode01irq <= 1; | |
100 | end | |
101 | if ((posy + 1) == rLYC) | |
102 | lycirq <= 1; | |
103 | ||
104 | end | |
105 | end else begin | |
106 | posx <= posx + 1; | |
107 | if (posx == 165) | |
108 | mode00irq <= 1; | |
109 | else if (posx == 373) | |
110 | mode10irq <= 1; | |
111 | else begin | |
112 | mode00irq <= 0; | |
113 | mode01irq <= 0; | |
114 | mode10irq <= 0; | |
115 | end | |
116 | lycirq <= 0; | |
117 | end | |
118 | end | |
119 | ||
120 | /***** Video RAM *****/ | |
121 | /* Base is 0x8000 | |
122 | * | |
123 | * Tile data from 8000-8FFF or 8800-97FF | |
124 | * Background tile maps 9800-9BFF or 9C00-9FFF | |
125 | */ | |
126 | reg [7:0] tiledata [6143:0]; | |
127 | reg [7:0] bgmap1 [1023:0]; | |
128 | reg [7:0] bgmap2 [1023:0]; | |
129 | ||
130 | // Upper five bits are Y coord, lower five bits are X coord | |
131 | wire [7:0] vxpos = rSCX + posx - 3; | |
132 | wire [7:0] vypos = rSCY + posy; | |
133 | ||
134 | // The new tile number is loaded when vxpos[2:0] is 3'b101 | |
135 | // The new tile data low is loaded when vxpos[2:0] is 3'b110 | |
136 | // The new tile data high is loaded when vxpos[2:0] is 3'b111 | |
137 | // The new tile data is latched and ready when vxpos[2:0] is 3'b000! | |
138 | wire [9:0] bgmapaddr = {vypos[7:3], vxpos[7:3]}; | |
139 | reg [7:0] tileno; | |
140 | wire [10:0] tileaddr = {tileno, vypos[2:1]}; | |
141 | reg [7:0] tilelowtmp, tilehigh, tilelow; | |
142 | assign pixdata = {tilehigh[vxpos[2:0]], tilelow[vxpos[2:0]]}; | |
143 | ||
144 | wire decode_tiledata = (addr >= 16'h8000) && (addr <= 16'h97FF); | |
145 | wire decode_bgmap1 = (addr >= 16'h9800) && (addr <= 16'h9BFF); | |
146 | ||
147 | always @(negedge clk) | |
148 | if (vraminuse) begin | |
149 | if ((posx == 0) || ((posx > 2) && (vxpos[2:0] == 3'b101))) | |
150 | tileno <= bgmap1[bgmapaddr]; | |
151 | else if ((posx == 1) || ((posx > 2) && (vxpos[2:0] == 3'b110))) | |
152 | tilelowtmp <= tiledata[{tileaddr, 1'b0}]; | |
153 | else if ((posx == 2) || ((posx > 2) && (vxpos[2:0] == 3'b111))) begin | |
154 | tilehigh <= tiledata[{tileaddr, 1'b1}]; | |
155 | tilelow <= tilelowtmp; | |
156 | end | |
157 | end else begin | |
158 | if (decode_tiledata) begin | |
159 | tilelowtmp <= tiledata[addr[12:0]]; | |
160 | if (wr) | |
161 | tiledata[addr[12:0]] <= data; | |
162 | end else if (decode_bgmap1) begin | |
163 | tileno <= bgmap1[addr[12:0]]; | |
164 | if (wr) | |
165 | bgmap1[addr[12:0]] <= data; | |
166 | end | |
167 | end | |
168 | ||
169 | /***** Bus interface *****/ | |
170 | assign data = rd ? | |
171 | (addr == `ADDR_LCDC) ? rLCDC : | |
172 | (addr == `ADDR_STAT) ? {rSTAT[7:3], (rLYC == posy) ? 1'b1 : 1'b0, mode} : | |
173 | (addr == `ADDR_SCY) ? rSCY : | |
174 | (addr == `ADDR_SCX) ? rSCX : | |
175 | (addr == `ADDR_LY) ? posy : | |
176 | (addr == `ADDR_LYC) ? rLYC : | |
177 | (addr == `ADDR_BGP) ? rBGP : | |
178 | (addr == `ADDR_OBP0) ? rOBP0 : | |
179 | (addr == `ADDR_OBP1) ? rOBP1 : | |
180 | (addr == `ADDR_WY) ? rWY : | |
181 | (addr == `ADDR_WX) ? rWX : | |
182 | (decode_tiledata) ? tilelowtmp : | |
183 | (decode_bgmap1) ? tileno : | |
184 | 8'bzzzzzzzz : | |
185 | 8'bzzzzzzzz; | |
186 | ||
187 | always @(negedge clk) | |
188 | begin | |
189 | if (wr) | |
190 | case (addr) | |
191 | `ADDR_LCDC: rLCDC <= data; | |
192 | `ADDR_STAT: rSTAT <= {data[7:2],rSTAT[1:0]}; | |
193 | `ADDR_SCY: rSCY <= data; | |
194 | `ADDR_SCX: rSCX <= data; | |
195 | `ADDR_LYC: rLYC <= data; | |
196 | `ADDR_DMA: rDMA <= data; | |
197 | `ADDR_BGP: rBGP <= data; | |
198 | `ADDR_OBP0: rOBP0 <= data; | |
199 | `ADDR_OBP1: rOBP1 <= data; | |
200 | `ADDR_WY: rWY <= data; | |
201 | `ADDR_WX: rWX <= data; | |
202 | endcase | |
203 | end | |
204 | endmodule |