]> Joshua Wise's Git repositories - fpgaboy.git/blame_incremental - GBZ80Core.v
First cut at timer
[fpgaboy.git] / GBZ80Core.v
... / ...
CommitLineData
1`define REG_A 0
2`define REG_B 1
3`define REG_C 2
4`define REG_D 3
5`define REG_E 4
6`define REG_F 5
7`define REG_H 6
8`define REG_L 7
9`define REG_SPH 8
10`define REG_SPL 9
11`define REG_PCH 10
12`define REG_PCL 11
13
14`define FLAG_Z 8'b10000000
15`define FLAG_N 8'b01000000
16`define FLAG_H 8'b00100000
17`define FLAG_C 8'b00010000
18
19`define STATE_FETCH 2'h0
20`define STATE_DECODE 2'h1
21`define STATE_EXECUTE 2'h2
22`define STATE_WRITEBACK 2'h3
23
24`define INSN_LD_reg_imm8 8'b00xxx110
25`define INSN_HALT 8'b01110110
26`define INSN_LD_HL_reg 8'b01110xxx
27`define INSN_LD_reg_HL 8'b01xxx110
28`define INSN_LD_reg_reg 8'b01xxxxxx
29`define INSN_LD_reg_imm16 8'b00xx0001
30`define INSN_LD_SP_HL 8'b11111001
31`define INSN_PUSH_reg 8'b11xx0101
32`define INSN_POP_reg 8'b11xx0001
33`define INSN_LDH_AC 8'b111x0010 // Either LDH A,(C) or LDH (C),A
34`define INSN_LDx_AHL 8'b001xx010 // LDD/LDI A,(HL) / (HL),A
35`define INSN_ALU8 8'b10xxxxxx // 10 xxx yyy
36`define INSN_NOP 8'b00000000
37`define INSN_RST 8'b11xxx111
38`define INSN_RET 8'b110x1001 // 1 = RETI, 0 = RET
39`define INSN_RETCC 8'b110xx000
40`define INSN_CALL 8'b11001101
41`define INSN_CALLCC 8'b110xx100 // Not that call/cc.
42`define INSN_JP_imm 8'b11000011
43`define INSN_JPCC_imm 8'b110xx010
44`define INSN_ALU_A 8'b00xxx111
45`define INSN_JP_HL 8'b11101001
46`define INSN_JR_imm 8'b00011000
47`define INSN_JRCC_imm 8'b001xx000
48`define INSN_INCDEC16 8'b00xxx011
49
50`define INSN_cc_NZ 2'b00
51`define INSN_cc_Z 2'b01
52`define INSN_cc_NC 2'b10
53`define INSN_cc_C 2'b11
54
55`define INSN_reg_A 3'b111
56`define INSN_reg_B 3'b000
57`define INSN_reg_C 3'b001
58`define INSN_reg_D 3'b010
59`define INSN_reg_E 3'b011
60`define INSN_reg_H 3'b100
61`define INSN_reg_L 3'b101
62`define INSN_reg_dHL 3'b110
63`define INSN_reg16_BC 2'b00
64`define INSN_reg16_DE 2'b01
65`define INSN_reg16_HL 2'b10
66`define INSN_reg16_SP 2'b11
67`define INSN_stack_AF 2'b11
68`define INSN_stack_BC 2'b00
69`define INSN_stack_DE 2'b01
70`define INSN_stack_HL 2'b10
71`define INSN_alu_ADD 3'b000
72`define INSN_alu_ADC 3'b001
73`define INSN_alu_SUB 3'b010
74`define INSN_alu_SBC 3'b011
75`define INSN_alu_AND 3'b100
76`define INSN_alu_XOR 3'b101
77`define INSN_alu_OR 3'b110
78`define INSN_alu_CP 3'b111 // Oh lawd, is dat some CP?
79`define INSN_alu_RLCA 3'b000
80`define INSN_alu_RRCA 3'b001
81`define INSN_alu_RLA 3'b010
82`define INSN_alu_RRA 3'b011
83`define INSN_alu_DAA 3'b100
84`define INSN_alu_CPL 3'b101
85`define INSN_alu_SCF 3'b110
86`define INSN_alu_CCF 3'b111
87
88module GBZ80Core(
89 input clk,
90 output reg [15:0] busaddress, /* BUS_* is latched on STATE_FETCH. */
91 inout [7:0] busdata,
92 output reg buswr, output reg busrd);
93
94 reg [1:0] state = 0; /* State within this bus cycle (see STATE_*). */
95 reg [2:0] cycle = 0; /* Cycle for instructions. */
96
97 reg [7:0] registers[11:0];
98
99 reg [15:0] address; /* Address for the next bus operation. */
100
101 reg [7:0] opcode; /* Opcode from the current machine cycle. */
102
103 reg [7:0] rdata, wdata; /* Read data from this bus cycle, or write data for the next. */
104 reg rd = 1, wr = 0, newcycle = 1;
105
106 reg [7:0] tmp, tmp2; /* Generic temporary regs. */
107
108 reg [7:0] buswdata;
109 assign busdata = buswr ? buswdata : 8'bzzzzzzzz;
110
111 reg ie = 0;
112
113 initial begin
114 registers[ 0] <= 0;
115 registers[ 1] <= 0;
116 registers[ 2] <= 0;
117 registers[ 3] <= 0;
118 registers[ 4] <= 0;
119 registers[ 5] <= 0;
120 registers[ 6] <= 0;
121 registers[ 7] <= 0;
122 registers[ 8] <= 0;
123 registers[ 9] <= 0;
124 registers[10] <= 0;
125 registers[11] <= 0;
126 ie <= 0;
127 rd <= 1;
128 wr <= 0;
129 newcycle <= 1;
130 state <= 0;
131 cycle <= 0;
132 end
133
134 always @(posedge clk)
135 case (state)
136 `STATE_FETCH: begin
137 if (newcycle) begin
138 busaddress <= {registers[`REG_PCH], registers[`REG_PCL]};
139 buswr <= 0;
140 busrd <= 1;
141 end else begin
142 busaddress <= address;
143 buswr <= wr;
144 busrd <= rd;
145 if (wr)
146 buswdata <= wdata;
147 end
148 state <= `STATE_DECODE;
149 end
150 `STATE_DECODE: begin
151 if (newcycle) begin
152 opcode <= busdata;
153 rdata <= busdata;
154 newcycle <= 0;
155 cycle <= 0;
156 end else begin
157 if (rd) rdata <= busdata;
158 cycle <= cycle + 1;
159 end
160 buswr <= 0;
161 busrd <= 0;
162 wr <= 0;
163 rd <= 0;
164 address <= 16'bxxxxxxxxxxxxxxxx; // Make it obvious if something of type has happened.
165 wdata <= 8'bxxxxxxxx;
166 state <= `STATE_EXECUTE;
167 end
168 `STATE_EXECUTE: begin
169`define EXEC_INC_PC \
170 {registers[`REG_PCH], registers[`REG_PCL]} <= {registers[`REG_PCH], registers[`REG_PCL]} + 1
171`define EXEC_NEXTADDR_PCINC \
172 address <= {registers[`REG_PCH], registers[`REG_PCL]} + 1
173`define EXEC_NEWCYCLE \
174 newcycle <= 1; rd <= 1; wr <= 0
175 casex (opcode)
176 `INSN_LD_reg_imm8: begin
177 case (cycle)
178 0: begin
179 `EXEC_INC_PC;
180 `EXEC_NEXTADDR_PCINC;
181 rd <= 1;
182 end
183 1: begin
184 `EXEC_INC_PC;
185 if (opcode[5:3] == `INSN_reg_dHL) begin
186 address <= {registers[`REG_H], registers[`REG_L]};
187 wdata <= rdata;
188 rd <= 0;
189 wr <= 1;
190 end else begin
191 `EXEC_NEWCYCLE;
192 end
193 end
194 2: begin
195 `EXEC_NEWCYCLE;
196 end
197 endcase
198 end
199 `INSN_HALT: begin
200 `EXEC_NEWCYCLE;
201 /* XXX Interrupts needed for HALT. */
202 end
203 `INSN_LD_HL_reg: begin
204 case (cycle)
205 0: begin
206 case (opcode[2:0])
207 `INSN_reg_A: wdata <= registers[`REG_A];
208 `INSN_reg_B: wdata <= registers[`REG_B];
209 `INSN_reg_C: wdata <= registers[`REG_C];
210 `INSN_reg_D: wdata <= registers[`REG_D];
211 `INSN_reg_E: wdata <= registers[`REG_E];
212 `INSN_reg_H: wdata <= registers[`REG_H];
213 `INSN_reg_L: wdata <= registers[`REG_L];
214 endcase
215 address <= {registers[`REG_H], registers[`REG_L]};
216 wr <= 1; rd <= 0;
217 end
218 1: begin
219 `EXEC_INC_PC;
220 `EXEC_NEWCYCLE;
221 end
222 endcase
223 end
224 `INSN_LD_reg_HL: begin
225 case(cycle)
226 0: begin
227 address <= {registers[`REG_H], registers[`REG_L]};
228 rd <= 1;
229 end
230 1: begin
231 tmp <= rdata;
232 `EXEC_INC_PC;
233 `EXEC_NEWCYCLE;
234 end
235 endcase
236 end
237 `INSN_LD_reg_reg: begin
238 `EXEC_INC_PC;
239 `EXEC_NEWCYCLE;
240 case (opcode[2:0])
241 `INSN_reg_A: tmp <= registers[`REG_A];
242 `INSN_reg_B: tmp <= registers[`REG_B];
243 `INSN_reg_C: tmp <= registers[`REG_C];
244 `INSN_reg_D: tmp <= registers[`REG_D];
245 `INSN_reg_E: tmp <= registers[`REG_E];
246 `INSN_reg_H: tmp <= registers[`REG_H];
247 `INSN_reg_L: tmp <= registers[`REG_L];
248 endcase
249 end
250 `INSN_LD_reg_imm16: begin
251 `EXEC_INC_PC;
252 case (cycle)
253 0: begin
254 `EXEC_NEXTADDR_PCINC;
255 rd <= 1;
256 end
257 1: begin
258 `EXEC_NEXTADDR_PCINC;
259 rd <= 1;
260 end
261 2: begin `EXEC_NEWCYCLE; end
262 endcase
263 end
264 `INSN_LD_SP_HL: begin
265 case (cycle)
266 0: begin
267 tmp <= registers[`REG_H];
268 end
269 1: begin
270 `EXEC_NEWCYCLE;
271 `EXEC_INC_PC;
272 tmp <= registers[`REG_L];
273 end
274 endcase
275 end
276 `INSN_PUSH_reg: begin /* PUSH is 16 cycles! */
277 case (cycle)
278 0: begin
279 wr <= 1;
280 address <= {registers[`REG_SPH],registers[`REG_SPL]}-1;
281 case (opcode[5:4])
282 `INSN_stack_AF: wdata <= registers[`REG_A];
283 `INSN_stack_BC: wdata <= registers[`REG_B];
284 `INSN_stack_DE: wdata <= registers[`REG_D];
285 `INSN_stack_HL: wdata <= registers[`REG_H];
286 endcase
287 end
288 1: begin
289 wr <= 1;
290 address <= {registers[`REG_SPH],registers[`REG_SPL]}-1;
291 case (opcode[5:4])
292 `INSN_stack_AF: wdata <= registers[`REG_F];
293 `INSN_stack_BC: wdata <= registers[`REG_C];
294 `INSN_stack_DE: wdata <= registers[`REG_E];
295 `INSN_stack_HL: wdata <= registers[`REG_L];
296 endcase
297 end
298 2: begin /* Twiddle thumbs. */ end
299 3: begin
300 `EXEC_NEWCYCLE;
301 `EXEC_INC_PC;
302 end
303 endcase
304 end
305 `INSN_POP_reg: begin /* POP is 12 cycles! */
306 case (cycle)
307 0: begin
308 rd <= 1;
309 address <= {registers[`REG_SPH],registers[`REG_SPL]};
310 end
311 1: begin
312 rd <= 1;
313 address <= {registers[`REG_SPH],registers[`REG_SPL]};
314 end
315 2: begin
316 `EXEC_NEWCYCLE;
317 `EXEC_INC_PC;
318 end
319 endcase
320 end
321 `INSN_LDH_AC: begin
322 case (cycle)
323 0: begin
324 address <= {8'hFF,registers[`REG_C]};
325 if (opcode[4]) begin // LD A,(C)
326 rd <= 1;
327 end else begin
328 wr <= 1;
329 wdata <= registers[`REG_A];
330 end
331 end
332 1: begin
333 `EXEC_NEWCYCLE;
334 `EXEC_INC_PC;
335 end
336 endcase
337 end
338 `INSN_LDx_AHL: begin
339 case (cycle)
340 0: begin
341 address <= {registers[`REG_H],registers[`REG_L]};
342 if (opcode[3]) begin // LDx A, (HL)
343 rd <= 1;
344 end else begin
345 wr <= 1;
346 wdata <= registers[`REG_A];
347 end
348 end
349 1: begin
350 `EXEC_NEWCYCLE;
351 `EXEC_INC_PC;
352 end
353 endcase
354 end
355 `INSN_ALU8: begin
356 if ((opcode[2:0] == `INSN_reg_dHL) && (cycle == 0)) begin
357 // fffffffff fuck your shit, read from (HL) :(
358 rd <= 1;
359 address <= {registers[`REG_H], registers[`REG_L]};
360 end else begin
361 `EXEC_NEWCYCLE;
362 `EXEC_INC_PC;
363 case (opcode[2:0])
364 `INSN_reg_A: tmp <= registers[`REG_A];
365 `INSN_reg_B: tmp <= registers[`REG_B];
366 `INSN_reg_C: tmp <= registers[`REG_C];
367 `INSN_reg_D: tmp <= registers[`REG_D];
368 `INSN_reg_E: tmp <= registers[`REG_E];
369 `INSN_reg_H: tmp <= registers[`REG_H];
370 `INSN_reg_L: tmp <= registers[`REG_L];
371 `INSN_reg_dHL: tmp <= rdata;
372 endcase
373 end
374 end
375 `INSN_ALU_A: begin
376 `EXEC_NEWCYCLE;
377 `EXEC_INC_PC;
378 end
379 `INSN_NOP: begin
380 `EXEC_NEWCYCLE;
381 `EXEC_INC_PC;
382 end
383 `INSN_RST: begin
384 case (cycle)
385 0: begin
386 `EXEC_INC_PC; // This goes FIRST in RST
387 end
388 1: begin
389 wr <= 1;
390 address <= {registers[`REG_SPH],registers[`REG_SPL]}-1;
391 wdata <= registers[`REG_PCH];
392 end
393 2: begin
394 wr <= 1;
395 address <= {registers[`REG_SPH],registers[`REG_SPL]}-2;
396 wdata <= registers[`REG_PCL];
397 end
398 3: begin
399 `EXEC_NEWCYCLE;
400 {registers[`REG_PCH],registers[`REG_PCL]} <=
401 {10'b0,opcode[5:3],3'b0};
402 end
403 endcase
404 end
405 `INSN_RET,`INSN_RETCC: begin
406 case (cycle)
407 0: begin
408 rd <= 1;
409 address <= {registers[`REG_SPH],registers[`REG_SPL]};
410 end
411 1: begin // SPECIAL CASE: cycle does NOT increase linearly with ret!
412 `EXEC_INC_PC; // cycle 1 is skipped if we are not retcc
413 case (opcode[4:3])
414 `INSN_cc_NZ: if (registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
415 `INSN_cc_Z: if (~registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
416 `INSN_cc_NC: if (registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
417 `INSN_cc_C: if (~registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
418 endcase
419 rd <= 1;
420 address <= {registers[`REG_SPH],registers[`REG_SPL]};
421 end
422 2: begin
423 rd <= 1;
424 address <= {registers[`REG_SPH],registers[`REG_SPL]} + 1;
425 end
426 3: begin /* twiddle thumbs */ end
427 4: begin
428 `EXEC_NEWCYCLE;
429 // do NOT increment PC!
430 end
431 endcase
432 end
433 `INSN_CALL,`INSN_CALLCC: begin
434 case (cycle)
435 0: begin
436 `EXEC_INC_PC;
437 `EXEC_NEXTADDR_PCINC;
438 rd <= 1;
439 end
440 1: begin
441 `EXEC_INC_PC;
442 `EXEC_NEXTADDR_PCINC;
443 rd <= 1;
444 end
445 2: begin
446 `EXEC_INC_PC;
447 if (!opcode[0]) // i.e., is callcc
448 /* We need to check the condition code to bail out. */
449 case (opcode[4:3])
450 `INSN_cc_NZ: if (registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
451 `INSN_cc_Z: if (~registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
452 `INSN_cc_NC: if (registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
453 `INSN_cc_C: if (~registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
454 endcase
455 end
456 3: begin
457 address <= {registers[`REG_SPH],registers[`REG_SPL]} - 1;
458 wdata <= registers[`REG_PCH];
459 wr <= 1;
460 end
461 4: begin
462 address <= {registers[`REG_SPH],registers[`REG_SPL]} - 2;
463 wdata <= registers[`REG_PCL];
464 wr <= 1;
465 end
466 5: begin
467 `EXEC_NEWCYCLE; /* do NOT increment the PC */
468 end
469 endcase
470 end
471 `INSN_JP_imm,`INSN_JPCC_imm: begin
472 case (cycle)
473 0: begin
474 `EXEC_INC_PC;
475 `EXEC_NEXTADDR_PCINC;
476 rd <= 1;
477 end
478 1: begin
479 `EXEC_INC_PC;
480 `EXEC_NEXTADDR_PCINC;
481 rd <= 1;
482 end
483 2: begin
484 `EXEC_INC_PC;
485 if (!opcode[0]) begin // i.e., JP cc,nn
486 /* We need to check the condition code to bail out. */
487 case (opcode[4:3])
488 `INSN_cc_NZ: if (registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
489 `INSN_cc_Z: if (~registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
490 `INSN_cc_NC: if (registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
491 `INSN_cc_C: if (~registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
492 endcase
493 end
494 end
495 3: begin
496 `EXEC_NEWCYCLE;
497 end
498 endcase
499 end
500 `INSN_JP_HL: begin
501 `EXEC_NEWCYCLE;
502 end
503 `INSN_JR_imm,`INSN_JRCC_imm: begin
504 case (cycle)
505 0: begin
506 `EXEC_INC_PC;
507 `EXEC_NEXTADDR_PCINC;
508 rd <= 1;
509 end
510 1: begin
511 `EXEC_INC_PC;
512 if (opcode[5]) begin // i.e., JP cc,nn
513 /* We need to check the condition code to bail out. */
514 case (opcode[4:3])
515 `INSN_cc_NZ: if (registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
516 `INSN_cc_Z: if (~registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
517 `INSN_cc_NC: if (registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
518 `INSN_cc_C: if (~registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
519 endcase
520 end
521 end
522 2: begin
523 `EXEC_NEWCYCLE;
524 end
525 endcase
526 end
527 `INSN_INCDEC16: begin
528 case (cycle)
529 0: begin
530 case (opcode[5:4])
531 `INSN_reg16_BC: begin
532 tmp <= registers[`REG_B];
533 tmp2 <= registers[`REG_C];
534 end
535 `INSN_reg16_DE: begin
536 tmp <= registers[`REG_D];
537 tmp2 <= registers[`REG_E];
538 end
539 `INSN_reg16_HL: begin
540 tmp <= registers[`REG_H];
541 tmp2 <= registers[`REG_L];
542 end
543 `INSN_reg16_SP: begin
544 tmp <= registers[`REG_SPH];
545 tmp2 <= registers[`REG_SPL];
546 end
547 endcase
548 end
549 1: begin
550 `EXEC_INC_PC;
551 `EXEC_NEWCYCLE;
552 end
553 endcase
554 end
555 default:
556 $stop;
557 endcase
558 state <= `STATE_WRITEBACK;
559 end
560 `STATE_WRITEBACK: begin
561 casex (opcode)
562 `INSN_LD_reg_imm8:
563 case (cycle)
564 0: begin end
565 1: case (opcode[5:3])
566 `INSN_reg_A: begin registers[`REG_A] <= rdata; end
567 `INSN_reg_B: begin registers[`REG_B] <= rdata; end
568 `INSN_reg_C: begin registers[`REG_C] <= rdata; end
569 `INSN_reg_D: begin registers[`REG_D] <= rdata; end
570 `INSN_reg_E: begin registers[`REG_E] <= rdata; end
571 `INSN_reg_H: begin registers[`REG_H] <= rdata; end
572 `INSN_reg_L: begin registers[`REG_L] <= rdata; end
573 `INSN_reg_dHL: begin /* Go off to cycle 2 */ end
574 endcase
575 2: begin end
576 endcase
577 `INSN_HALT: begin
578 /* Nothing needs happen here. */
579 /* XXX Interrupts needed for HALT. */
580 end
581 `INSN_LD_HL_reg: begin
582 /* Nothing of interest here */
583 end
584 `INSN_LD_reg_HL: begin
585 case (cycle)
586 0: begin end
587 1: begin
588 case (opcode[5:3])
589 `INSN_reg_A: registers[`REG_A] <= tmp;
590 `INSN_reg_B: registers[`REG_B] <= tmp;
591 `INSN_reg_C: registers[`REG_C] <= tmp;
592 `INSN_reg_D: registers[`REG_D] <= tmp;
593 `INSN_reg_E: registers[`REG_E] <= tmp;
594 `INSN_reg_H: registers[`REG_H] <= tmp;
595 `INSN_reg_L: registers[`REG_L] <= tmp;
596 endcase
597 end
598 endcase
599 end
600 `INSN_LD_reg_reg: begin
601 case (opcode[5:3])
602 `INSN_reg_A: registers[`REG_A] <= tmp;
603 `INSN_reg_B: registers[`REG_B] <= tmp;
604 `INSN_reg_C: registers[`REG_C] <= tmp;
605 `INSN_reg_D: registers[`REG_D] <= tmp;
606 `INSN_reg_E: registers[`REG_E] <= tmp;
607 `INSN_reg_H: registers[`REG_H] <= tmp;
608 `INSN_reg_L: registers[`REG_L] <= tmp;
609 endcase
610 end
611 `INSN_LD_reg_imm16: begin
612 case (cycle)
613 0: begin /* */ end
614 1: begin
615 case (opcode[5:4])
616 `INSN_reg16_BC: registers[`REG_C] <= rdata;
617 `INSN_reg16_DE: registers[`REG_E] <= rdata;
618 `INSN_reg16_HL: registers[`REG_L] <= rdata;
619 `INSN_reg16_SP: registers[`REG_SPL] <= rdata;
620 endcase
621 end
622 2: begin
623 case (opcode[5:4])
624 `INSN_reg16_BC: registers[`REG_B] <= rdata;
625 `INSN_reg16_DE: registers[`REG_D] <= rdata;
626 `INSN_reg16_HL: registers[`REG_H] <= rdata;
627 `INSN_reg16_SP: registers[`REG_SPH] <= rdata;
628 endcase
629 end
630 endcase
631 end
632 `INSN_LD_SP_HL: begin
633 case (cycle)
634 0: registers[`REG_SPH] <= tmp;
635 1: registers[`REG_SPL] <= tmp;
636 endcase
637 end
638 `INSN_PUSH_reg: begin /* PUSH is 16 cycles! */
639 case (cycle)
640 0: {registers[`REG_SPH],registers[`REG_SPL]} <=
641 {registers[`REG_SPH],registers[`REG_SPL]} - 1;
642 1: {registers[`REG_SPH],registers[`REG_SPL]} <=
643 {registers[`REG_SPH],registers[`REG_SPL]} - 1;
644 2: begin /* type F */ end
645 3: begin /* type F */ end
646 endcase
647 end
648 `INSN_POP_reg: begin /* POP is 12 cycles! */
649 case (cycle)
650 0: {registers[`REG_SPH],registers[`REG_SPL]} <=
651 {registers[`REG_SPH],registers[`REG_SPL]} + 1;
652 1: begin
653 case (opcode[5:4])
654 `INSN_stack_AF: registers[`REG_F] <= rdata;
655 `INSN_stack_BC: registers[`REG_C] <= rdata;
656 `INSN_stack_DE: registers[`REG_E] <= rdata;
657 `INSN_stack_HL: registers[`REG_L] <= rdata;
658 endcase
659 {registers[`REG_SPH],registers[`REG_SPL]} <=
660 {registers[`REG_SPH],registers[`REG_SPL]} + 1;
661 end
662 2: begin
663 case (opcode[5:4])
664 `INSN_stack_AF: registers[`REG_A] <= rdata;
665 `INSN_stack_BC: registers[`REG_B] <= rdata;
666 `INSN_stack_DE: registers[`REG_D] <= rdata;
667 `INSN_stack_HL: registers[`REG_H] <= rdata;
668 endcase
669 end
670 endcase
671 end
672 `INSN_LDH_AC: begin
673 case (cycle)
674 0: begin /* Type F */ end
675 1: if (opcode[4])
676 registers[`REG_A] <= rdata;
677 endcase
678 end
679 `INSN_LDx_AHL: begin
680 case (cycle)
681 0: begin /* Type F */ end
682 1: begin
683 if (opcode[3])
684 registers[`REG_A] <= rdata;
685 {registers[`REG_H],registers[`REG_L]} <=
686 opcode[4] ? // if set, LDD, else LDI
687 ({registers[`REG_H],registers[`REG_L]} - 1) :
688 ({registers[`REG_H],registers[`REG_L]} + 1);
689 end
690 endcase
691 end
692 `INSN_ALU8: begin
693 if ((opcode[2:0] == `INSN_reg_dHL) && (cycle == 0)) begin
694 /* Sit on our asses. */
695 end else begin /* Actually do the computation! */
696 case (opcode[5:3])
697 `INSN_alu_ADD: begin
698 registers[`REG_A] <=
699 registers[`REG_A] + tmp;
700 registers[`REG_F] <=
701 { /* Z */ ((registers[`REG_A] + tmp) == 0) ? 1'b1 : 1'b0,
702 /* N */ 1'b0,
703 /* H */ (({1'b0,registers[`REG_A][3:0]} + {1'b0,tmp[3:0]}) >> 4 == 1) ? 1'b1 : 1'b0,
704 /* C */ (({1'b0,registers[`REG_A]} + {1'b0,tmp}) >> 8 == 1) ? 1'b1 : 1'b0,
705 registers[`REG_F][3:0]
706 };
707 end
708 `INSN_alu_ADC: begin
709 registers[`REG_A] <=
710 registers[`REG_A] + tmp + {7'b0,registers[`REG_F][4]};
711 registers[`REG_F] <=
712 { /* Z */ ((registers[`REG_A] + tmp + {7'b0,registers[`REG_F][4]}) == 0) ? 1'b1 : 1'b0,
713 /* N */ 1'b0,
714 /* H */ (({1'b0,registers[`REG_A][3:0]} + {1'b0,tmp[3:0]} + {4'b0,registers[`REG_F][4]}) >> 4 == 1) ? 1'b1 : 1'b0,
715 /* C */ (({1'b0,registers[`REG_A]} + {1'b0,tmp} + {8'b0,registers[`REG_F][4]}) >> 8 == 1) ? 1'b1 : 1'b0,
716 registers[`REG_F][3:0]
717 };
718 end
719 `INSN_alu_SUB: begin
720 registers[`REG_A] <=
721 registers[`REG_A] - tmp;
722 registers[`REG_F] <=
723 { /* Z */ ((registers[`REG_A] - tmp) == 0) ? 1'b1 : 1'b0,
724 /* N */ 1'b1,
725 /* H */ (({1'b0,registers[`REG_A][3:0]} - {1'b0,tmp[3:0]}) >> 4 == 1) ? 1'b1 : 1'b0,
726 /* C */ (({1'b0,registers[`REG_A]} - {1'b0,tmp}) >> 8 == 1) ? 1'b1 : 1'b0,
727 registers[`REG_F][3:0]
728 };
729 end
730 `INSN_alu_SBC: begin
731 registers[`REG_A] <=
732 registers[`REG_A] - (tmp + {7'b0,registers[`REG_F][4]});
733 registers[`REG_F] <=
734 { /* Z */ ((registers[`REG_A] - (tmp + {7'b0,registers[`REG_F][4]})) == 0) ? 1'b1 : 1'b0,
735 /* N */ 1'b1,
736 /* H */ (({1'b0,registers[`REG_A][3:0]} - ({1'b0,tmp[3:0]} + {4'b0,registers[`REG_F][4]})) >> 4 == 1) ? 1'b1 : 1'b0,
737 /* C */ (({1'b0,registers[`REG_A]} - ({1'b0,tmp} + {8'b0,registers[`REG_F][4]})) >> 8 == 1) ? 1'b1 : 1'b0,
738 registers[`REG_F][3:0]
739 };
740 end
741 `INSN_alu_AND: begin
742 registers[`REG_A] <=
743 registers[`REG_A] & tmp;
744 registers[`REG_F] <=
745 { /* Z */ ((registers[`REG_A] & tmp) == 0) ? 1'b1 : 1'b0,
746 3'b010,
747 registers[`REG_F][3:0]
748 };
749 end
750 `INSN_alu_OR: begin
751 registers[`REG_A] <=
752 registers[`REG_A] | tmp;
753 registers[`REG_F] <=
754 { /* Z */ ((registers[`REG_A] | tmp) == 0) ? 1'b1 : 1'b0,
755 3'b000,
756 registers[`REG_F][3:0]
757 };
758 end
759 `INSN_alu_XOR: begin
760 registers[`REG_A] <=
761 registers[`REG_A] ^ tmp;
762 registers[`REG_F] <=
763 { /* Z */ ((registers[`REG_A] ^ tmp) == 0) ? 1'b1 : 1'b0,
764 3'b000,
765 registers[`REG_F][3:0]
766 };
767 end
768 `INSN_alu_CP: begin
769 registers[`REG_F] <=
770 { /* Z */ ((registers[`REG_A] - tmp) == 0) ? 1'b1 : 1'b0,
771 /* N */ 1'b1,
772 /* H */ (({1'b0,registers[`REG_A][3:0]} - {1'b0,tmp[3:0]}) >> 4 == 1) ? 1'b1 : 1'b0,
773 /* C */ (({1'b0,registers[`REG_A]} - {1'b0,tmp}) >> 8 == 1) ? 1'b1 : 1'b0,
774 registers[`REG_F][3:0]
775 };
776 end
777 default:
778 $stop;
779 endcase
780 end
781 end
782 `INSN_ALU_A: begin
783 case(opcode[5:3])
784 `INSN_alu_RLCA: begin
785 registers[`REG_A] <= {registers[`REG_A][6:0],registers[`REG_A][7]};
786 registers[`REG_F] <= {registers[`REG_F][7:5],registers[`REG_A][7],registers[`REG_F][3:0]};
787 end
788 `INSN_alu_RRCA: begin
789 registers[`REG_A] <= {registers[`REG_A][0],registers[`REG_A][7:1]};
790 registers[`REG_F] <= {registers[`REG_F][7:5],registers[`REG_A][0],registers[`REG_F][3:0]};
791 end
792 `INSN_alu_RLA: begin
793 registers[`REG_A] <= {registers[`REG_A][6:0],registers[`REG_F][4]};
794 registers[`REG_F] <= {registers[`REG_F][7:5],registers[`REG_A][7],registers[`REG_F][3:0]};
795 end
796 `INSN_alu_RRA: begin
797 registers[`REG_A] <= {registers[`REG_A][4],registers[`REG_A][7:1]};
798 registers[`REG_F] <= {registers[`REG_F][7:5],registers[`REG_A][0],registers[`REG_F][3:0]};
799 end
800 `INSN_alu_CPL: begin
801 registers[`REG_A] <= ~registers[`REG_A];
802 registers[`REG_F] <= {registers[`REG_F][7],1'b1,1'b1,registers[`REG_F][4:0]};
803 end
804 `INSN_alu_SCF: begin
805 registers[`REG_F] <= {registers[`REG_F][7:5],1,registers[`REG_F][3:0]};
806 end
807 `INSN_alu_CCF: begin
808 registers[`REG_F] <= {registers[`REG_F][7:5],~registers[`REG_F][4],registers[`REG_F][3:0]};
809 end
810 endcase
811 end
812 `INSN_NOP: begin /* NOP! */ end
813 `INSN_RST: begin
814 case (cycle)
815 0: begin /* type F */ end
816 1: begin /* type F */ end
817 2: begin /* type F */ end
818 3: {registers[`REG_SPH],registers[`REG_SPL]} <=
819 {registers[`REG_SPH],registers[`REG_SPL]}-2;
820 endcase
821 end
822 `INSN_RET,`INSN_RETCC: begin
823 case (cycle)
824 0: if (opcode[0]) // i.e., not RETCC
825 cycle <= 1; // Skip cycle 1; it gets incremented on the next round.
826 1: begin /* Nothing need happen here. */ end
827 2: registers[`REG_PCL] <= rdata;
828 3: registers[`REG_PCH] <= rdata;
829 4: begin
830 {registers[`REG_SPH],registers[`REG_SPL]} <=
831 {registers[`REG_SPH],registers[`REG_SPL]} + 2;
832 if (opcode[4] && opcode[0]) /* RETI */
833 ie <= 1;
834 end
835 endcase
836 end
837 `INSN_CALL,`INSN_CALLCC: begin
838 case (cycle)
839 0: begin /* type F */ end
840 1: tmp <= rdata; // tmp contains newpcl
841 2: tmp2 <= rdata; // tmp2 contains newpch
842 3: begin /* type F */ end
843 4: registers[`REG_PCH] <= tmp2;
844 5: begin
845 {registers[`REG_SPH],registers[`REG_SPL]} <=
846 {registers[`REG_SPH],registers[`REG_SPL]} - 2;
847 registers[`REG_PCL] <= tmp;
848 end
849 endcase
850 end
851 `INSN_JP_imm,`INSN_JPCC_imm: begin
852 case (cycle)
853 0: begin /* type F */ end
854 1: tmp <= rdata; // tmp contains newpcl
855 2: tmp2 <= rdata; // tmp2 contains newpch
856 3: {registers[`REG_PCH],registers[`REG_PCL]} <=
857 {tmp2,tmp};
858 endcase
859 end
860 `INSN_JP_HL: begin
861 {registers[`REG_PCH],registers[`REG_PCL]} <=
862 {registers[`REG_H],registers[`REG_L]};
863 end
864 `INSN_JR_imm,`INSN_JRCC_imm: begin
865 case (cycle)
866 0: begin /* type F */ end
867 1: tmp <= rdata;
868 2: {registers[`REG_PCH],registers[`REG_PCL]} <=
869 {registers[`REG_PCH],registers[`REG_PCL]} +
870 {tmp[7]?8'hFF:8'h00,tmp};
871 endcase
872 end
873 `INSN_INCDEC16: begin
874 case (cycle)
875 0: {tmp,tmp2} <= {tmp,tmp2} +
876 (opcode[3] ? 16'hFFFF : 16'h0001);
877 1: begin
878 case (opcode[5:4])
879 `INSN_reg16_BC: begin
880 registers[`REG_B] <= tmp;
881 registers[`REG_C] <= tmp2;
882 end
883 `INSN_reg16_DE: begin
884 registers[`REG_D] <= tmp;
885 registers[`REG_E] <= tmp2;
886 end
887 `INSN_reg16_HL: begin
888 registers[`REG_H] <= tmp;
889 registers[`REG_L] <= tmp2;
890 end
891 `INSN_reg16_SP: begin
892 registers[`REG_SPH] <= tmp;
893 registers[`REG_SPL] <= tmp2;
894 end
895 endcase
896 end
897 endcase
898 end
899 default:
900 $stop;
901 endcase
902 state <= `STATE_FETCH;
903 end
904 endcase
905endmodule
This page took 0.034665 seconds and 4 git commands to generate.