1 /* -*-mode:java; c-basic-offset:2; -*- */
3 Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.
5 Redistribution and use in source and binary forms, with or without
6 modification, are permitted provided that the following conditions are met:
8 1. Redistributions of source code must retain the above copyright notice,
9 this list of conditions and the following disclaimer.
11 2. Redistributions in binary form must reproduce the above copyright
12 notice, this list of conditions and the following disclaimer in
13 the documentation and/or other materials provided with the distribution.
15 3. The names of the authors may not be used to endorse or promote products
16 derived from this software without specific prior written permission.
18 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
19 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
20 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
21 INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
22 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
27 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * This program is based on zlib-1.1.3, so all credit should go authors
31 * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
32 * and contributors of zlib.
35 package com.jcraft.jzlib;
40 static final private int MAX_MEM_LEVEL=9;
42 static final private int Z_DEFAULT_COMPRESSION=-1;
44 static final private int MAX_WBITS=15; // 32K LZ77 window
45 static final private int DEF_MEM_LEVEL=8;
48 int good_length; // reduce lazy search above this match length
49 int max_lazy; // do not perform lazy search above this match length
50 int nice_length; // quit search above this match length
53 Config(int good_length, int max_lazy,
54 int nice_length, int max_chain, int func){
55 this.good_length=good_length;
56 this.max_lazy=max_lazy;
57 this.nice_length=nice_length;
58 this.max_chain=max_chain;
63 static final private int STORED=0;
64 static final private int FAST=1;
65 static final private int SLOW=2;
66 static final private Config[] config_table;
68 config_table=new Config[10];
69 // good lazy nice chain
70 config_table[0]=new Config(0, 0, 0, 0, STORED);
71 config_table[1]=new Config(4, 4, 8, 4, FAST);
72 config_table[2]=new Config(4, 5, 16, 8, FAST);
73 config_table[3]=new Config(4, 6, 32, 32, FAST);
75 config_table[4]=new Config(4, 4, 16, 16, SLOW);
76 config_table[5]=new Config(8, 16, 32, 32, SLOW);
77 config_table[6]=new Config(8, 16, 128, 128, SLOW);
78 config_table[7]=new Config(8, 32, 128, 256, SLOW);
79 config_table[8]=new Config(32, 128, 258, 1024, SLOW);
80 config_table[9]=new Config(32, 258, 258, 4096, SLOW);
83 static final private String[] z_errmsg = {
84 "need dictionary", // Z_NEED_DICT 2
85 "stream end", // Z_STREAM_END 1
87 "file error", // Z_ERRNO (-1)
88 "stream error", // Z_STREAM_ERROR (-2)
89 "data error", // Z_DATA_ERROR (-3)
90 "insufficient memory", // Z_MEM_ERROR (-4)
91 "buffer error", // Z_BUF_ERROR (-5)
92 "incompatible version",// Z_VERSION_ERROR (-6)
96 // block not completed, need more input or more output
97 static final private int NeedMore=0;
99 // block flush performed
100 static final private int BlockDone=1;
102 // finish started, need only more output at next deflate
103 static final private int FinishStarted=2;
105 // finish done, accept no more input or output
106 static final private int FinishDone=3;
108 // preset dictionary flag in zlib header
109 static final private int PRESET_DICT=0x20;
111 static final private int Z_FILTERED=1;
112 static final private int Z_HUFFMAN_ONLY=2;
113 static final private int Z_DEFAULT_STRATEGY=0;
115 static final private int Z_NO_FLUSH=0;
116 static final private int Z_PARTIAL_FLUSH=1;
117 static final private int Z_SYNC_FLUSH=2;
118 static final private int Z_FULL_FLUSH=3;
119 static final private int Z_FINISH=4;
121 static final private int Z_OK=0;
122 static final private int Z_STREAM_END=1;
123 static final private int Z_NEED_DICT=2;
124 static final private int Z_ERRNO=-1;
125 static final private int Z_STREAM_ERROR=-2;
126 static final private int Z_DATA_ERROR=-3;
127 static final private int Z_MEM_ERROR=-4;
128 static final private int Z_BUF_ERROR=-5;
129 static final private int Z_VERSION_ERROR=-6;
131 static final private int INIT_STATE=42;
132 static final private int BUSY_STATE=113;
133 static final private int FINISH_STATE=666;
135 // The deflate compression method
136 static final private int Z_DEFLATED=8;
138 static final private int STORED_BLOCK=0;
139 static final private int STATIC_TREES=1;
140 static final private int DYN_TREES=2;
142 // The three kinds of block type
143 static final private int Z_BINARY=0;
144 static final private int Z_ASCII=1;
145 static final private int Z_UNKNOWN=2;
147 static final private int Buf_size=8*2;
149 // repeat previous bit length 3-6 times (2 bits of repeat count)
150 static final private int REP_3_6=16;
152 // repeat a zero length 3-10 times (3 bits of repeat count)
153 static final private int REPZ_3_10=17;
155 // repeat a zero length 11-138 times (7 bits of repeat count)
156 static final private int REPZ_11_138=18;
158 static final private int MIN_MATCH=3;
159 static final private int MAX_MATCH=258;
160 static final private int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1);
162 static final private int MAX_BITS=15;
163 static final private int D_CODES=30;
164 static final private int BL_CODES=19;
165 static final private int LENGTH_CODES=29;
166 static final private int LITERALS=256;
167 static final private int L_CODES=(LITERALS+1+LENGTH_CODES);
168 static final private int HEAP_SIZE=(2*L_CODES+1);
170 static final private int END_BLOCK=256;
172 ZStream strm; // pointer back to this zlib stream
173 int status; // as the name implies
174 byte[] pending_buf; // output still pending
175 int pending_buf_size; // size of pending_buf
176 int pending_out; // next pending byte to output to the stream
177 int pending; // nb of bytes in the pending buffer
178 int noheader; // suppress zlib header and adler32
179 byte data_type; // UNKNOWN, BINARY or ASCII
180 byte method; // STORED (for zip only) or DEFLATED
181 int last_flush; // value of flush param for previous deflate call
183 int w_size; // LZ77 window size (32K by default)
184 int w_bits; // log2(w_size) (8..16)
185 int w_mask; // w_size - 1
188 // Sliding window. Input bytes are read into the second half of the window,
189 // and move to the first half later to keep a dictionary of at least wSize
190 // bytes. With this organization, matches are limited to a distance of
191 // wSize-MAX_MATCH bytes, but this ensures that IO is always
192 // performed with a length multiple of the block size. Also, it limits
193 // the window size to 64K, which is quite useful on MSDOS.
194 // To do: use the user input buffer as sliding window.
197 // Actual size of window: 2*wSize, except when the user input buffer
198 // is directly used as sliding window.
201 // Link to older string with same hash index. To limit the size of this
202 // array to 64K, this link is maintained only for the last 32K strings.
203 // An index in this array is thus a window index modulo 32K.
205 short[] head; // Heads of the hash chains or NIL.
207 int ins_h; // hash index of string to be inserted
208 int hash_size; // number of elements in hash table
209 int hash_bits; // log2(hash_size)
210 int hash_mask; // hash_size-1
212 // Number of bits by which ins_h must be shifted at each input
213 // step. It must be such that after MIN_MATCH steps, the oldest
214 // byte no longer takes part in the hash key, that is:
215 // hash_shift * MIN_MATCH >= hash_bits
218 // Window position at the beginning of the current output block. Gets
219 // negative when the window is moved backwards.
223 int match_length; // length of best match
224 int prev_match; // previous match
225 int match_available; // set if previous match exists
226 int strstart; // start of string to insert
227 int match_start; // start of matching string
228 int lookahead; // number of valid bytes ahead in window
230 // Length of the best match at previous step. Matches not greater than this
231 // are discarded. This is used in the lazy match evaluation.
234 // To speed up deflation, hash chains are never searched beyond this
235 // length. A higher limit improves compression ratio but degrades the speed.
236 int max_chain_length;
238 // Attempt to find a better match only when the current match is strictly
239 // smaller than this value. This mechanism is used only for compression
243 // Insert new strings in the hash table only if the match length is not
244 // greater than this length. This saves time but degrades compression.
245 // max_insert_length is used only for compression levels <= 3.
247 int level; // compression level (1..9)
248 int strategy; // favor or force Huffman coding
250 // Use a faster search when the previous match is longer than this
253 // Stop searching when current match exceeds this
256 short[] dyn_ltree; // literal and length tree
257 short[] dyn_dtree; // distance tree
258 short[] bl_tree; // Huffman tree for bit lengths
260 Tree l_desc=new Tree(); // desc for literal tree
261 Tree d_desc=new Tree(); // desc for distance tree
262 Tree bl_desc=new Tree(); // desc for bit length tree
264 // number of codes at each bit length for an optimal tree
265 short[] bl_count=new short[MAX_BITS+1];
267 // heap used to build the Huffman trees
268 int[] heap=new int[2*L_CODES+1];
270 int heap_len; // number of elements in the heap
271 int heap_max; // element of largest frequency
272 // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
273 // The same heap array is used to build all trees.
275 // Depth of each subtree used as tie breaker for trees of equal frequency
276 byte[] depth=new byte[2*L_CODES+1];
278 int l_buf; // index for literals or lengths */
280 // Size of match buffer for literals/lengths. There are 4 reasons for
281 // limiting lit_bufsize to 64K:
282 // - frequencies can be kept in 16 bit counters
283 // - if compression is not successful for the first block, all input
284 // data is still in the window so we can still emit a stored block even
285 // when input comes from standard input. (This can also be done for
286 // all blocks if lit_bufsize is not greater than 32K.)
287 // - if compression is not successful for a file smaller than 64K, we can
288 // even emit a stored file instead of a stored block (saving 5 bytes).
289 // This is applicable only for zip (not gzip or zlib).
290 // - creating new Huffman trees less frequently may not provide fast
291 // adaptation to changes in the input data statistics. (Take for
292 // example a binary file with poorly compressible code followed by
293 // a highly compressible string table.) Smaller buffer sizes give
294 // fast adaptation but have of course the overhead of transmitting
295 // trees more frequently.
296 // - I can't count above 4
299 int last_lit; // running index in l_buf
301 // Buffer for distances. To simplify the code, d_buf and l_buf have
302 // the same number of elements. To use different lengths, an extra flag
303 // array would be necessary.
305 int d_buf; // index of pendig_buf
307 int opt_len; // bit length of current block with optimal trees
308 int static_len; // bit length of current block with static trees
309 int matches; // number of string matches in current block
310 int last_eob_len; // bit length of EOB code for last block
312 // Output buffer. bits are inserted starting at the bottom (least
313 // significant bits).
316 // Number of valid bits in bi_buf. All bits above the last valid bit
321 dyn_ltree=new short[HEAP_SIZE*2];
322 dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree
323 bl_tree=new short[(2*BL_CODES+1)*2]; // Huffman tree for bit lengths
327 window_size=2*w_size;
330 for(int i=0; i<hash_size-1; i++){
334 // Set the default configuration parameters:
335 max_lazy_match = Deflate.config_table[level].max_lazy;
336 good_match = Deflate.config_table[level].good_length;
337 nice_match = Deflate.config_table[level].nice_length;
338 max_chain_length = Deflate.config_table[level].max_chain;
343 match_length = prev_length = MIN_MATCH-1;
348 // Initialize the tree data structures for a new zlib stream.
351 l_desc.dyn_tree = dyn_ltree;
352 l_desc.stat_desc = StaticTree.static_l_desc;
354 d_desc.dyn_tree = dyn_dtree;
355 d_desc.stat_desc = StaticTree.static_d_desc;
357 bl_desc.dyn_tree = bl_tree;
358 bl_desc.stat_desc = StaticTree.static_bl_desc;
362 last_eob_len = 8; // enough lookahead for inflate
364 // Initialize the first block of the first file:
369 // Initialize the trees.
370 for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0;
371 for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0;
372 for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0;
374 dyn_ltree[END_BLOCK*2] = 1;
375 opt_len = static_len = 0;
376 last_lit = matches = 0;
379 // Restore the heap property by moving down the tree starting at node k,
380 // exchanging a node with the smallest of its two sons if necessary, stopping
381 // when the heap property is re-established (each father smaller than its
383 void pqdownheap(short[] tree, // the tree to restore
384 int k // node to move down
387 int j = k << 1; // left son of k
388 while (j <= heap_len) {
389 // Set j to the smallest of the two sons:
391 smaller(tree, heap[j+1], heap[j], depth)){
394 // Exit if v is smaller than both sons
395 if(smaller(tree, v, heap[j], depth)) break;
397 // Exchange v with the smallest son
398 heap[k]=heap[j]; k = j;
399 // And continue down the tree, setting j to the left son of k
405 static boolean smaller(short[] tree, int n, int m, byte[] depth){
409 (tn2==tm2 && depth[n] <= depth[m]));
412 // Scan a literal or distance tree to determine the frequencies of the codes
413 // in the bit length tree.
414 void scan_tree (short[] tree,// the tree to be scanned
415 int max_code // and its largest code of non zero frequency
417 int n; // iterates over all tree elements
418 int prevlen = -1; // last emitted length
419 int curlen; // length of current code
420 int nextlen = tree[0*2+1]; // length of next code
421 int count = 0; // repeat count of the current code
422 int max_count = 7; // max repeat count
423 int min_count = 4; // min repeat count
425 if (nextlen == 0){ max_count = 138; min_count = 3; }
426 tree[(max_code+1)*2+1] = (short)0xffff; // guard
428 for(n = 0; n <= max_code; n++) {
429 curlen = nextlen; nextlen = tree[(n+1)*2+1];
430 if(++count < max_count && curlen == nextlen) {
433 else if(count < min_count) {
434 bl_tree[curlen*2] += count;
436 else if(curlen != 0) {
437 if(curlen != prevlen) bl_tree[curlen*2]++;
438 bl_tree[REP_3_6*2]++;
440 else if(count <= 10) {
441 bl_tree[REPZ_3_10*2]++;
444 bl_tree[REPZ_11_138*2]++;
446 count = 0; prevlen = curlen;
448 max_count = 138; min_count = 3;
450 else if(curlen == nextlen) {
451 max_count = 6; min_count = 3;
454 max_count = 7; min_count = 4;
459 // Construct the Huffman tree for the bit lengths and return the index in
460 // bl_order of the last bit length code to send.
462 int max_blindex; // index of last bit length code of non zero freq
464 // Determine the bit length frequencies for literal and distance trees
465 scan_tree(dyn_ltree, l_desc.max_code);
466 scan_tree(dyn_dtree, d_desc.max_code);
468 // Build the bit length tree:
469 bl_desc.build_tree(this);
470 // opt_len now includes the length of the tree representations, except
471 // the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
473 // Determine the number of bit length codes to send. The pkzip format
474 // requires that at least 4 bit length codes be sent. (appnote.txt says
475 // 3 but the actual value used is 4.)
476 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
477 if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break;
479 // Update opt_len to include the bit length tree and counts
480 opt_len += 3*(max_blindex+1) + 5+5+4;
486 // Send the header for a block using dynamic Huffman trees: the counts, the
487 // lengths of the bit length codes, the literal tree and the distance tree.
488 // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
489 void send_all_trees(int lcodes, int dcodes, int blcodes){
490 int rank; // index in bl_order
492 send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt
493 send_bits(dcodes-1, 5);
494 send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt
495 for (rank = 0; rank < blcodes; rank++) {
496 send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3);
498 send_tree(dyn_ltree, lcodes-1); // literal tree
499 send_tree(dyn_dtree, dcodes-1); // distance tree
502 // Send a literal or distance tree in compressed form, using the codes in
504 void send_tree (short[] tree,// the tree to be sent
505 int max_code // and its largest code of non zero frequency
507 int n; // iterates over all tree elements
508 int prevlen = -1; // last emitted length
509 int curlen; // length of current code
510 int nextlen = tree[0*2+1]; // length of next code
511 int count = 0; // repeat count of the current code
512 int max_count = 7; // max repeat count
513 int min_count = 4; // min repeat count
515 if (nextlen == 0){ max_count = 138; min_count = 3; }
517 for (n = 0; n <= max_code; n++) {
518 curlen = nextlen; nextlen = tree[(n+1)*2+1];
519 if(++count < max_count && curlen == nextlen) {
522 else if(count < min_count) {
523 do { send_code(curlen, bl_tree); } while (--count != 0);
525 else if(curlen != 0){
526 if(curlen != prevlen){
527 send_code(curlen, bl_tree); count--;
529 send_code(REP_3_6, bl_tree);
530 send_bits(count-3, 2);
532 else if(count <= 10){
533 send_code(REPZ_3_10, bl_tree);
534 send_bits(count-3, 3);
537 send_code(REPZ_11_138, bl_tree);
538 send_bits(count-11, 7);
540 count = 0; prevlen = curlen;
542 max_count = 138; min_count = 3;
544 else if(curlen == nextlen){
545 max_count = 6; min_count = 3;
548 max_count = 7; min_count = 4;
553 // Output a byte on the stream.
554 // IN assertion: there is enough room in pending_buf.
555 final void put_byte(byte[] p, int start, int len){
556 System.arraycopy(p, start, pending_buf, pending, len);
560 final void put_byte(byte c){
561 pending_buf[pending++]=c;
563 final void put_short(int w) {
564 put_byte((byte)(w/*&0xff*/));
565 put_byte((byte)(w>>>8));
567 final void putShortMSB(int b){
568 put_byte((byte)(b>>8));
569 put_byte((byte)(b/*&0xff*/));
572 final void send_code(int c, short[] tree){
574 send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff));
577 void send_bits(int value, int length){
579 if (bi_valid > (int)Buf_size - len) {
581 // bi_buf |= (val << bi_valid);
582 bi_buf |= ((val << bi_valid)&0xffff);
584 bi_buf = (short)(val >>> (Buf_size - bi_valid));
585 bi_valid += len - Buf_size;
587 // bi_buf |= (value) << bi_valid;
588 bi_buf |= (((value) << bi_valid)&0xffff);
593 // Send one empty static block to give enough lookahead for inflate.
594 // This takes 10 bits, of which 7 may remain in the bit buffer.
595 // The current inflate code requires 9 bits of lookahead. If the
596 // last two codes for the previous block (real code plus EOB) were coded
597 // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
598 // the last real code. In this case we send two empty static blocks instead
599 // of one. (There are no problems if the previous block is stored or fixed.)
600 // To simplify the code, we assume the worst case of last real code encoded
603 send_bits(STATIC_TREES<<1, 3);
604 send_code(END_BLOCK, StaticTree.static_ltree);
608 // Of the 10 bits for the empty block, we have already sent
609 // (10 - bi_valid) bits. The lookahead for the last real code (before
610 // the EOB of the previous block) was thus at least one plus the length
611 // of the EOB plus what we have just sent of the empty static block.
612 if (1 + last_eob_len + 10 - bi_valid < 9) {
613 send_bits(STATIC_TREES<<1, 3);
614 send_code(END_BLOCK, StaticTree.static_ltree);
621 // Save the match info and tally the frequency counts. Return true if
622 // the current block must be flushed.
623 boolean _tr_tally (int dist, // distance of matched string
624 int lc // match length-MIN_MATCH or unmatched char (if dist==0)
627 pending_buf[d_buf+last_lit*2] = (byte)(dist>>>8);
628 pending_buf[d_buf+last_lit*2+1] = (byte)dist;
630 pending_buf[l_buf+last_lit] = (byte)lc; last_lit++;
633 // lc is the unmatched char
638 // Here, lc is the match length - MIN_MATCH
639 dist--; // dist = match distance - 1
640 dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++;
641 dyn_dtree[Tree.d_code(dist)*2]++;
644 if ((last_lit & 0x1fff) == 0 && level > 2) {
645 // Compute an upper bound for the compressed length
646 int out_length = last_lit*8;
647 int in_length = strstart - block_start;
649 for (dcode = 0; dcode < D_CODES; dcode++) {
650 out_length += (int)dyn_dtree[dcode*2] *
651 (5L+Tree.extra_dbits[dcode]);
654 if ((matches < (last_lit/2)) && out_length < in_length/2) return true;
657 return (last_lit == lit_bufsize-1);
658 // We avoid equality with lit_bufsize because of wraparound at 64K
659 // on 16 bit machines and because stored blocks are restricted to
663 // Send the block data compressed using the given Huffman trees
664 void compress_block(short[] ltree, short[] dtree){
665 int dist; // distance of matched string
666 int lc; // match length or unmatched char (if dist == 0)
667 int lx = 0; // running index in l_buf
668 int code; // the code to send
669 int extra; // number of extra bits to send
673 dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)|
674 (pending_buf[d_buf+lx*2+1]&0xff);
675 lc=(pending_buf[l_buf+lx])&0xff; lx++;
678 send_code(lc, ltree); // send a literal byte
681 // Here, lc is the match length - MIN_MATCH
682 code = Tree._length_code[lc];
684 send_code(code+LITERALS+1, ltree); // send the length code
685 extra = Tree.extra_lbits[code];
687 lc -= Tree.base_length[code];
688 send_bits(lc, extra); // send the extra length bits
690 dist--; // dist is now the match distance - 1
691 code = Tree.d_code(dist);
693 send_code(code, dtree); // send the distance code
694 extra = Tree.extra_dbits[code];
696 dist -= Tree.base_dist[code];
697 send_bits(dist, extra); // send the extra distance bits
699 } // literal or match pair ?
701 // Check that the overlay between pending_buf and d_buf+l_buf is ok:
703 while (lx < last_lit);
706 send_code(END_BLOCK, ltree);
707 last_eob_len = ltree[END_BLOCK*2+1];
710 // Set the data type to ASCII or BINARY, using a crude approximation:
711 // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
712 // IN assertion: the fields freq of dyn_ltree are set and the total of all
713 // frequencies does not exceed 64K (to fit in an int on 16 bit machines).
714 void set_data_type(){
718 while(n<7){ bin_freq += dyn_ltree[n*2]; n++;}
719 while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;}
720 while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;}
721 data_type=(byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII);
724 // Flush the bit buffer, keeping at most 7 bits in it.
726 if (bi_valid == 16) {
731 else if (bi_valid >= 8) {
732 put_byte((byte)bi_buf);
738 // Flush the bit buffer and align the output on a byte boundary
742 } else if (bi_valid > 0) {
743 put_byte((byte)bi_buf);
749 // Copy a stored block, storing first the length and its
750 // one's complement if requested.
751 void copy_block(int buf, // the input data
752 int len, // its length
753 boolean header // true if block header must be written
756 bi_windup(); // align on byte boundary
757 last_eob_len = 8; // enough lookahead for inflate
760 put_short((short)len);
761 put_short((short)~len);
765 // put_byte(window[buf+index]);
768 put_byte(window, buf, len);
771 void flush_block_only(boolean eof){
772 _tr_flush_block(block_start>=0 ? block_start : -1,
773 strstart-block_start,
775 block_start=strstart;
776 strm.flush_pending();
779 // Copy without compression as much as possible from the input stream, return
780 // the current block state.
781 // This function does not insert new strings in the dictionary since
782 // uncompressible data is probably not useful. This function is used
783 // only for the level=0 compression option.
784 // NOTE: this function should be optimized to avoid extra copying from
785 // window to pending_buf.
786 int deflate_stored(int flush){
787 // Stored blocks are limited to 0xffff bytes, pending_buf is limited
788 // to pending_buf_size, and each stored block has a 5 byte header:
790 int max_block_size = 0xffff;
793 if(max_block_size > pending_buf_size - 5) {
794 max_block_size = pending_buf_size - 5;
797 // Copy as much as possible from input to output:
799 // Fill the window as much as possible:
802 if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore;
803 if(lookahead==0) break; // flush the current block
809 // Emit a stored block if pending_buf will be full:
810 max_start=block_start+max_block_size;
811 if(strstart==0|| strstart>=max_start) {
812 // strstart == 0 is possible when wraparound on 16-bit machine
813 lookahead = (int)(strstart-max_start);
814 strstart = (int)max_start;
816 flush_block_only(false);
817 if(strm.avail_out==0) return NeedMore;
821 // Flush if we may have to slide, otherwise block_start may become
822 // negative and the data will be gone:
823 if(strstart-block_start >= w_size-MIN_LOOKAHEAD) {
824 flush_block_only(false);
825 if(strm.avail_out==0) return NeedMore;
829 flush_block_only(flush == Z_FINISH);
830 if(strm.avail_out==0)
831 return (flush == Z_FINISH) ? FinishStarted : NeedMore;
833 return flush == Z_FINISH ? FinishDone : BlockDone;
836 // Send a stored block
837 void _tr_stored_block(int buf, // input block
838 int stored_len, // length of input block
839 boolean eof // true if this is the last block for a file
841 send_bits((STORED_BLOCK<<1)+(eof?1:0), 3); // send block type
842 copy_block(buf, stored_len, true); // with header
845 // Determine the best encoding for the current block: dynamic trees, static
846 // trees or store, and output the encoded block to the zip file.
847 void _tr_flush_block(int buf, // input block, or NULL if too old
848 int stored_len, // length of input block
849 boolean eof // true if this is the last block for a file
851 int opt_lenb, static_lenb;// opt_len and static_len in bytes
852 int max_blindex = 0; // index of last bit length code of non zero freq
854 // Build the Huffman trees unless a stored block is forced
856 // Check if the file is ascii or binary
857 if(data_type == Z_UNKNOWN) set_data_type();
859 // Construct the literal and distance trees
860 l_desc.build_tree(this);
862 d_desc.build_tree(this);
864 // At this point, opt_len and static_len are the total bit lengths of
865 // the compressed block data, excluding the tree representations.
867 // Build the bit length tree for the above two trees, and get the index
868 // in bl_order of the last bit length code to send.
869 max_blindex=build_bl_tree();
871 // Determine the best encoding. Compute first the block length in bytes
872 opt_lenb=(opt_len+3+7)>>>3;
873 static_lenb=(static_len+3+7)>>>3;
875 if(static_lenb<=opt_lenb) opt_lenb=static_lenb;
878 opt_lenb=static_lenb=stored_len+5; // force a stored block
881 if(stored_len+4<=opt_lenb && buf != -1){
882 // 4: two words for the lengths
883 // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
884 // Otherwise we can't have processed more than WSIZE input bytes since
885 // the last block flush, because compression would have been
886 // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
887 // transform a block into a stored block.
888 _tr_stored_block(buf, stored_len, eof);
890 else if(static_lenb == opt_lenb){
891 send_bits((STATIC_TREES<<1)+(eof?1:0), 3);
892 compress_block(StaticTree.static_ltree, StaticTree.static_dtree);
895 send_bits((DYN_TREES<<1)+(eof?1:0), 3);
896 send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
897 compress_block(dyn_ltree, dyn_dtree);
900 // The above check is made mod 2^32, for files larger than 512 MB
901 // and uLong implemented on 32 bits.
910 // Fill the window when the lookahead becomes insufficient.
911 // Updates strstart and lookahead.
913 // IN assertion: lookahead < MIN_LOOKAHEAD
914 // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
915 // At least one byte has been read, or avail_in == 0; reads are
916 // performed for at least two bytes (required for the zip translate_eol
917 // option -- not supported here).
921 int more; // Amount of free space at the end of the window.
924 more = (window_size-lookahead-strstart);
926 // Deal with !@#$% 64K limit:
927 if(more==0 && strstart==0 && lookahead==0){
931 // Very unlikely, but possible on 16 bit machine if strstart == 0
932 // and lookahead == 1 (input done one byte at time)
935 // If the window is almost full and there is insufficient lookahead,
936 // move the upper half to the lower one to make room in the upper half.
938 else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) {
939 System.arraycopy(window, w_size, window, 0, w_size);
941 strstart-=w_size; // we now have strstart >= MAX_DIST
944 // Slide the hash table (could be avoided with 32 bit values
945 // at the expense of memory usage). We slide even when level == 0
946 // to keep the hash table consistent if we switch back to level > 0
947 // later. (Using level 0 permanently is not an optimal usage of
948 // zlib, so we don't care about this pathological case.)
953 m = (head[--p]&0xffff);
954 head[p]=(m>=w_size ? (short)(m-w_size) : 0);
961 m = (prev[--p]&0xffff);
962 prev[p] = (m >= w_size ? (short)(m-w_size) : 0);
963 // If n is not on any hash chain, prev[n] is garbage but
964 // its value will never be used.
970 if (strm.avail_in == 0) return;
972 // If there was no sliding:
973 // strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
974 // more == window_size - lookahead - strstart
975 // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
976 // => more >= window_size - 2*WSIZE + 2
977 // In the BIG_MEM or MMAP case (not yet supported),
978 // window_size == input_size + MIN_LOOKAHEAD &&
979 // strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
980 // Otherwise, window_size == 2*WSIZE so more >= 2.
981 // If there was sliding, more >= WSIZE. So in all cases, more >= 2.
983 n = strm.read_buf(window, strstart + lookahead, more);
986 // Initialize the hash value now that we have some input:
987 if(lookahead >= MIN_MATCH) {
988 ins_h = window[strstart]&0xff;
989 ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask;
991 // If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
992 // but this is not important since only literal bytes will be emitted.
994 while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0);
997 // Compress as much as possible from the input stream, return the current
999 // This function does not perform lazy evaluation of matches and inserts
1000 // new strings in the dictionary only for unmatched strings or for short
1001 // matches. It is used only for the fast compression options.
1002 int deflate_fast(int flush){
1003 // short hash_head = 0; // head of the hash chain
1004 int hash_head = 0; // head of the hash chain
1005 boolean bflush; // set if current block must be flushed
1008 // Make sure that we always have enough lookahead, except
1009 // at the end of the input file. We need MAX_MATCH bytes
1010 // for the next match, plus MIN_MATCH bytes to insert the
1011 // string following the next match.
1012 if(lookahead < MIN_LOOKAHEAD){
1014 if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){
1017 if(lookahead == 0) break; // flush the current block
1020 // Insert the string window[strstart .. strstart+2] in the
1021 // dictionary, and set hash_head to the head of the hash chain:
1022 if(lookahead >= MIN_MATCH){
1023 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
1025 // prev[strstart&w_mask]=hash_head=head[ins_h];
1026 hash_head=(head[ins_h]&0xffff);
1027 prev[strstart&w_mask]=head[ins_h];
1028 head[ins_h]=(short)strstart;
1031 // Find the longest match, discarding those <= prev_length.
1032 // At this point we have always match_length < MIN_MATCH
1035 ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD
1037 // To simplify the code, we prevent matches with the string
1038 // of window index 0 (in particular we have to avoid a match
1039 // of the string with itself at the start of the input file).
1040 if(strategy != Z_HUFFMAN_ONLY){
1041 match_length=longest_match (hash_head);
1043 // longest_match() sets match_start
1045 if(match_length>=MIN_MATCH){
1046 // check_match(strstart, match_start, match_length);
1048 bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH);
1050 lookahead -= match_length;
1052 // Insert new strings in the hash table only if the match length
1053 // is not too large. This saves time but degrades compression.
1054 if(match_length <= max_lazy_match &&
1055 lookahead >= MIN_MATCH) {
1056 match_length--; // string at strstart already in hash table
1060 ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
1061 // prev[strstart&w_mask]=hash_head=head[ins_h];
1062 hash_head=(head[ins_h]&0xffff);
1063 prev[strstart&w_mask]=head[ins_h];
1064 head[ins_h]=(short)strstart;
1066 // strstart never exceeds WSIZE-MAX_MATCH, so there are
1067 // always MIN_MATCH bytes ahead.
1069 while (--match_length != 0);
1073 strstart += match_length;
1075 ins_h = window[strstart]&0xff;
1077 ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask;
1078 // If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1079 // matter since it will be recomputed at next deflate call.
1083 // No match, output a literal byte
1085 bflush=_tr_tally(0, window[strstart]&0xff);
1091 flush_block_only(false);
1092 if(strm.avail_out==0) return NeedMore;
1096 flush_block_only(flush == Z_FINISH);
1097 if(strm.avail_out==0){
1098 if(flush == Z_FINISH) return FinishStarted;
1099 else return NeedMore;
1101 return flush==Z_FINISH ? FinishDone : BlockDone;
1104 // Same as above, but achieves better compression. We use a lazy
1105 // evaluation for matches: a match is finally adopted only if there is
1106 // no better match at the next window position.
1107 int deflate_slow(int flush){
1108 // short hash_head = 0; // head of hash chain
1109 int hash_head = 0; // head of hash chain
1110 boolean bflush; // set if current block must be flushed
1112 // Process the input block.
1114 // Make sure that we always have enough lookahead, except
1115 // at the end of the input file. We need MAX_MATCH bytes
1116 // for the next match, plus MIN_MATCH bytes to insert the
1117 // string following the next match.
1119 if (lookahead < MIN_LOOKAHEAD) {
1121 if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1124 if(lookahead == 0) break; // flush the current block
1127 // Insert the string window[strstart .. strstart+2] in the
1128 // dictionary, and set hash_head to the head of the hash chain:
1130 if(lookahead >= MIN_MATCH) {
1131 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask;
1132 // prev[strstart&w_mask]=hash_head=head[ins_h];
1133 hash_head=(head[ins_h]&0xffff);
1134 prev[strstart&w_mask]=head[ins_h];
1135 head[ins_h]=(short)strstart;
1138 // Find the longest match, discarding those <= prev_length.
1139 prev_length = match_length; prev_match = match_start;
1140 match_length = MIN_MATCH-1;
1142 if (hash_head != 0 && prev_length < max_lazy_match &&
1143 ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD
1145 // To simplify the code, we prevent matches with the string
1146 // of window index 0 (in particular we have to avoid a match
1147 // of the string with itself at the start of the input file).
1149 if(strategy != Z_HUFFMAN_ONLY) {
1150 match_length = longest_match(hash_head);
1152 // longest_match() sets match_start
1154 if (match_length <= 5 && (strategy == Z_FILTERED ||
1155 (match_length == MIN_MATCH &&
1156 strstart - match_start > 4096))) {
1158 // If prev_match is also MIN_MATCH, match_start is garbage
1159 // but we will ignore the current match anyway.
1160 match_length = MIN_MATCH-1;
1164 // If there was a match at the previous step and the current
1165 // match is not better, output the previous match:
1166 if(prev_length >= MIN_MATCH && match_length <= prev_length) {
1167 int max_insert = strstart + lookahead - MIN_MATCH;
1168 // Do not insert strings in hash table beyond this.
1170 // check_match(strstart-1, prev_match, prev_length);
1172 bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH);
1174 // Insert in hash table all strings up to the end of the match.
1175 // strstart-1 and strstart are already inserted. If there is not
1176 // enough lookahead, the last two strings are not inserted in
1178 lookahead -= prev_length-1;
1181 if(++strstart <= max_insert) {
1182 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
1183 //prev[strstart&w_mask]=hash_head=head[ins_h];
1184 hash_head=(head[ins_h]&0xffff);
1185 prev[strstart&w_mask]=head[ins_h];
1186 head[ins_h]=(short)strstart;
1189 while(--prev_length != 0);
1190 match_available = 0;
1191 match_length = MIN_MATCH-1;
1195 flush_block_only(false);
1196 if(strm.avail_out==0) return NeedMore;
1198 } else if (match_available!=0) {
1200 // If there was no match at the previous position, output a
1201 // single literal. If there was a match but the current match
1202 // is longer, truncate the previous match to a single literal.
1204 bflush=_tr_tally(0, window[strstart-1]&0xff);
1207 flush_block_only(false);
1211 if(strm.avail_out == 0) return NeedMore;
1213 // There is no previous match to compare with, wait for
1214 // the next step to decide.
1216 match_available = 1;
1222 if(match_available!=0) {
1223 bflush=_tr_tally(0, window[strstart-1]&0xff);
1224 match_available = 0;
1226 flush_block_only(flush == Z_FINISH);
1228 if(strm.avail_out==0){
1229 if(flush == Z_FINISH) return FinishStarted;
1230 else return NeedMore;
1233 return flush == Z_FINISH ? FinishDone : BlockDone;
1236 int longest_match(int cur_match){
1237 int chain_length = max_chain_length; // max hash chain length
1238 int scan = strstart; // current string
1239 int match; // matched string
1240 int len; // length of current match
1241 int best_len = prev_length; // best match length so far
1242 int limit = strstart>(w_size-MIN_LOOKAHEAD) ?
1243 strstart-(w_size-MIN_LOOKAHEAD) : 0;
1244 int nice_match=this.nice_match;
1246 // Stop when cur_match becomes <= limit. To simplify the code,
1247 // we prevent matches with the string of window index 0.
1251 int strend = strstart + MAX_MATCH;
1252 byte scan_end1 = window[scan+best_len-1];
1253 byte scan_end = window[scan+best_len];
1255 // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1256 // It is easy to get rid of this optimization if necessary.
1258 // Do not waste too much time if we already have a good match:
1259 if (prev_length >= good_match) {
1263 // Do not look for matches beyond the end of the input. This is necessary
1264 // to make deflate deterministic.
1265 if (nice_match > lookahead) nice_match = lookahead;
1270 // Skip to next match if the match length cannot increase
1271 // or if the match length is less than 2:
1272 if (window[match+best_len] != scan_end ||
1273 window[match+best_len-1] != scan_end1 ||
1274 window[match] != window[scan] ||
1275 window[++match] != window[scan+1]) continue;
1277 // The check at best_len-1 can be removed because it will be made
1278 // again later. (This heuristic is not always a win.)
1279 // It is not necessary to compare scan[2] and match[2] since they
1280 // are always equal when the other bytes match, given that
1281 // the hash keys are equal and that HASH_BITS >= 8.
1284 // We check for insufficient lookahead only every 8th comparison;
1285 // the 256th check will be made at strstart+258.
1287 } while (window[++scan] == window[++match] &&
1288 window[++scan] == window[++match] &&
1289 window[++scan] == window[++match] &&
1290 window[++scan] == window[++match] &&
1291 window[++scan] == window[++match] &&
1292 window[++scan] == window[++match] &&
1293 window[++scan] == window[++match] &&
1294 window[++scan] == window[++match] &&
1297 len = MAX_MATCH - (int)(strend - scan);
1298 scan = strend - MAX_MATCH;
1301 match_start = cur_match;
1303 if (len >= nice_match) break;
1304 scan_end1 = window[scan+best_len-1];
1305 scan_end = window[scan+best_len];
1308 } while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit
1309 && --chain_length != 0);
1311 if (best_len <= lookahead) return best_len;
1315 int deflateInit(ZStream strm, int level, int bits){
1316 return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL,
1317 Z_DEFAULT_STRATEGY);
1319 int deflateInit(ZStream strm, int level){
1320 return deflateInit(strm, level, MAX_WBITS);
1322 int deflateInit2(ZStream strm, int level, int method, int windowBits,
1323 int memLevel, int strategy){
1325 // byte[] my_version=ZLIB_VERSION;
1328 // if (version == null || version[0] != my_version[0]
1329 // || stream_size != sizeof(z_stream)) {
1330 // return Z_VERSION_ERROR;
1335 if (level == Z_DEFAULT_COMPRESSION) level = 6;
1337 if (windowBits < 0) { // undocumented feature: suppress zlib header
1339 windowBits = -windowBits;
1342 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL ||
1343 method != Z_DEFLATED ||
1344 windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
1345 strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
1346 return Z_STREAM_ERROR;
1349 strm.dstate = (Deflate)this;
1351 this.noheader = noheader;
1352 w_bits = windowBits;
1353 w_size = 1 << w_bits;
1354 w_mask = w_size - 1;
1356 hash_bits = memLevel + 7;
1357 hash_size = 1 << hash_bits;
1358 hash_mask = hash_size - 1;
1359 hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH);
1361 window = new byte[w_size*2];
1362 prev = new short[w_size];
1363 head = new short[hash_size];
1365 lit_bufsize = 1 << (memLevel + 6); // 16K elements by default
1367 // We overlay pending_buf and d_buf+l_buf. This works since the average
1368 // output size for (length,distance) codes is <= 24 bits.
1369 pending_buf = new byte[lit_bufsize*4];
1370 pending_buf_size = lit_bufsize*4;
1372 d_buf = lit_bufsize/2;
1373 l_buf = (1+2)*lit_bufsize;
1377 //System.out.println("level="+level);
1379 this.strategy = strategy;
1380 this.method = (byte)method;
1382 return deflateReset(strm);
1385 int deflateReset(ZStream strm){
1386 strm.total_in = strm.total_out = 0;
1388 strm.data_type = Z_UNKNOWN;
1394 noheader = 0; // was set to -1 by deflate(..., Z_FINISH);
1396 status = (noheader!=0) ? BUSY_STATE : INIT_STATE;
1397 strm.adler=strm._adler.adler32(0, null, 0, 0);
1399 last_flush = Z_NO_FLUSH;
1407 if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){
1408 return Z_STREAM_ERROR;
1410 // Deallocate in reverse order of allocations:
1417 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1420 int deflateParams(ZStream strm, int _level, int _strategy){
1423 if(_level == Z_DEFAULT_COMPRESSION){
1426 if(_level < 0 || _level > 9 ||
1427 _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) {
1428 return Z_STREAM_ERROR;
1431 if(config_table[level].func!=config_table[_level].func &&
1432 strm.total_in != 0) {
1433 // Flush the last buffer:
1434 err = strm.deflate(Z_PARTIAL_FLUSH);
1437 if(level != _level) {
1439 max_lazy_match = config_table[level].max_lazy;
1440 good_match = config_table[level].good_length;
1441 nice_match = config_table[level].nice_length;
1442 max_chain_length = config_table[level].max_chain;
1444 strategy = _strategy;
1448 int deflateSetDictionary (ZStream strm, byte[] dictionary, int dictLength){
1449 int length = dictLength;
1452 if(dictionary == null || status != INIT_STATE)
1453 return Z_STREAM_ERROR;
1455 strm.adler=strm._adler.adler32(strm.adler, dictionary, 0, dictLength);
1457 if(length < MIN_MATCH) return Z_OK;
1458 if(length > w_size-MIN_LOOKAHEAD){
1459 length = w_size-MIN_LOOKAHEAD;
1460 index=dictLength-length; // use the tail of the dictionary
1462 System.arraycopy(dictionary, index, window, 0, length);
1464 block_start = length;
1466 // Insert all strings in the hash table (except for the last two bytes).
1467 // s->lookahead stays null, so s->ins_h will be recomputed at the next
1468 // call of fill_window.
1470 ins_h = window[0]&0xff;
1471 ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask;
1473 for(int n=0; n<=length-MIN_MATCH; n++){
1474 ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask;
1475 prev[n&w_mask]=head[ins_h];
1476 head[ins_h]=(short)n;
1481 int deflate(ZStream strm, int flush){
1484 if(flush>Z_FINISH || flush<0){
1485 return Z_STREAM_ERROR;
1488 if(strm.next_out == null ||
1489 (strm.next_in == null && strm.avail_in != 0) ||
1490 (status == FINISH_STATE && flush != Z_FINISH)) {
1491 strm.msg=z_errmsg[Z_NEED_DICT-(Z_STREAM_ERROR)];
1492 return Z_STREAM_ERROR;
1494 if(strm.avail_out == 0){
1495 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
1499 this.strm = strm; // just in case
1500 old_flush = last_flush;
1503 // Write the zlib header
1504 if(status == INIT_STATE) {
1505 int header = (Z_DEFLATED+((w_bits-8)<<4))<<8;
1506 int level_flags=((level-1)&0xff)>>1;
1508 if(level_flags>3) level_flags=3;
1509 header |= (level_flags<<6);
1510 if(strstart!=0) header |= PRESET_DICT;
1511 header+=31-(header % 31);
1514 putShortMSB(header);
1517 // Save the adler32 of the preset dictionary:
1519 putShortMSB((int)(strm.adler>>>16));
1520 putShortMSB((int)(strm.adler&0xffff));
1522 strm.adler=strm._adler.adler32(0, null, 0, 0);
1525 // Flush as much pending output as possible
1527 strm.flush_pending();
1528 if(strm.avail_out == 0) {
1529 //System.out.println(" avail_out==0");
1530 // Since avail_out is 0, deflate will be called again with
1531 // more output space, but possibly with both pending and
1532 // avail_in equal to zero. There won't be anything to do,
1533 // but this is not an error situation so make sure we
1534 // return OK instead of BUF_ERROR at next call of deflate:
1539 // Make sure there is something to do and avoid duplicate consecutive
1540 // flushes. For repeated and useless calls with Z_FINISH, we keep
1541 // returning Z_STREAM_END instead of Z_BUFF_ERROR.
1543 else if(strm.avail_in==0 && flush <= old_flush &&
1544 flush != Z_FINISH) {
1545 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
1549 // User must not provide more input after the first FINISH:
1550 if(status == FINISH_STATE && strm.avail_in != 0) {
1551 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
1555 // Start a new block or continue the current one.
1556 if(strm.avail_in!=0 || lookahead!=0 ||
1557 (flush != Z_NO_FLUSH && status != FINISH_STATE)) {
1559 switch(config_table[level].func){
1561 bstate = deflate_stored(flush);
1564 bstate = deflate_fast(flush);
1567 bstate = deflate_slow(flush);
1572 if (bstate==FinishStarted || bstate==FinishDone) {
1573 status = FINISH_STATE;
1575 if (bstate==NeedMore || bstate==FinishStarted) {
1576 if(strm.avail_out == 0) {
1577 last_flush = -1; // avoid BUF_ERROR next call, see above
1580 // If flush != Z_NO_FLUSH && avail_out == 0, the next call
1581 // of deflate should use the same flush parameter to make sure
1582 // that the flush is complete. So we don't have to output an
1583 // empty block here, this will be done at next call. This also
1584 // ensures that for a very small output buffer, we emit at most
1588 if (bstate==BlockDone) {
1589 if(flush == Z_PARTIAL_FLUSH) {
1592 else { // FULL_FLUSH or SYNC_FLUSH
1593 _tr_stored_block(0, 0, false);
1594 // For a full flush, this empty block will be recognized
1595 // as a special marker by inflate_sync().
1596 if(flush == Z_FULL_FLUSH) {
1597 //state.head[s.hash_size-1]=0;
1598 for(int i=0; i<hash_size/*-1*/; i++) // forget history
1602 strm.flush_pending();
1603 if(strm.avail_out == 0) {
1604 last_flush = -1; // avoid BUF_ERROR at next call, see above
1610 if(flush!=Z_FINISH) return Z_OK;
1611 if(noheader!=0) return Z_STREAM_END;
1613 // Write the zlib trailer (adler32)
1614 putShortMSB((int)(strm.adler>>>16));
1615 putShortMSB((int)(strm.adler&0xffff));
1616 strm.flush_pending();
1618 // If avail_out is zero, the application will call deflate again
1619 // to flush the rest.
1620 noheader = -1; // write the trailer only once!
1621 return pending != 0 ? Z_OK : Z_STREAM_END;