]>
Commit | Line | Data |
---|---|---|
1 | /* -*-mode:java; c-basic-offset:2; -*- */ | |
2 | /* | |
3 | Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. | |
4 | ||
5 | Redistribution and use in source and binary forms, with or without | |
6 | modification, are permitted provided that the following conditions are met: | |
7 | ||
8 | 1. Redistributions of source code must retain the above copyright notice, | |
9 | this list of conditions and the following disclaimer. | |
10 | ||
11 | 2. Redistributions in binary form must reproduce the above copyright | |
12 | notice, this list of conditions and the following disclaimer in | |
13 | the documentation and/or other materials provided with the distribution. | |
14 | ||
15 | 3. The names of the authors may not be used to endorse or promote products | |
16 | derived from this software without specific prior written permission. | |
17 | ||
18 | THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, | |
19 | INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND | |
20 | FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, | |
21 | INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, | |
22 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
23 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, | |
24 | OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
25 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
26 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |
27 | EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
28 | */ | |
29 | /* | |
30 | * This program is based on zlib-1.1.3, so all credit should go authors | |
31 | * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) | |
32 | * and contributors of zlib. | |
33 | */ | |
34 | ||
35 | package com.jcraft.jzlib; | |
36 | ||
37 | public | |
38 | final class Deflate{ | |
39 | ||
40 | static final private int MAX_MEM_LEVEL=9; | |
41 | ||
42 | static final private int Z_DEFAULT_COMPRESSION=-1; | |
43 | ||
44 | static final private int MAX_WBITS=15; // 32K LZ77 window | |
45 | static final private int DEF_MEM_LEVEL=8; | |
46 | ||
47 | static class Config{ | |
48 | int good_length; // reduce lazy search above this match length | |
49 | int max_lazy; // do not perform lazy search above this match length | |
50 | int nice_length; // quit search above this match length | |
51 | int max_chain; | |
52 | int func; | |
53 | Config(int good_length, int max_lazy, | |
54 | int nice_length, int max_chain, int func){ | |
55 | this.good_length=good_length; | |
56 | this.max_lazy=max_lazy; | |
57 | this.nice_length=nice_length; | |
58 | this.max_chain=max_chain; | |
59 | this.func=func; | |
60 | } | |
61 | } | |
62 | ||
63 | static final private int STORED=0; | |
64 | static final private int FAST=1; | |
65 | static final private int SLOW=2; | |
66 | static final private Config[] config_table; | |
67 | static{ | |
68 | config_table=new Config[10]; | |
69 | // good lazy nice chain | |
70 | config_table[0]=new Config(0, 0, 0, 0, STORED); | |
71 | config_table[1]=new Config(4, 4, 8, 4, FAST); | |
72 | config_table[2]=new Config(4, 5, 16, 8, FAST); | |
73 | config_table[3]=new Config(4, 6, 32, 32, FAST); | |
74 | ||
75 | config_table[4]=new Config(4, 4, 16, 16, SLOW); | |
76 | config_table[5]=new Config(8, 16, 32, 32, SLOW); | |
77 | config_table[6]=new Config(8, 16, 128, 128, SLOW); | |
78 | config_table[7]=new Config(8, 32, 128, 256, SLOW); | |
79 | config_table[8]=new Config(32, 128, 258, 1024, SLOW); | |
80 | config_table[9]=new Config(32, 258, 258, 4096, SLOW); | |
81 | } | |
82 | ||
83 | static final private String[] z_errmsg = { | |
84 | "need dictionary", // Z_NEED_DICT 2 | |
85 | "stream end", // Z_STREAM_END 1 | |
86 | "", // Z_OK 0 | |
87 | "file error", // Z_ERRNO (-1) | |
88 | "stream error", // Z_STREAM_ERROR (-2) | |
89 | "data error", // Z_DATA_ERROR (-3) | |
90 | "insufficient memory", // Z_MEM_ERROR (-4) | |
91 | "buffer error", // Z_BUF_ERROR (-5) | |
92 | "incompatible version",// Z_VERSION_ERROR (-6) | |
93 | "" | |
94 | }; | |
95 | ||
96 | // block not completed, need more input or more output | |
97 | static final private int NeedMore=0; | |
98 | ||
99 | // block flush performed | |
100 | static final private int BlockDone=1; | |
101 | ||
102 | // finish started, need only more output at next deflate | |
103 | static final private int FinishStarted=2; | |
104 | ||
105 | // finish done, accept no more input or output | |
106 | static final private int FinishDone=3; | |
107 | ||
108 | // preset dictionary flag in zlib header | |
109 | static final private int PRESET_DICT=0x20; | |
110 | ||
111 | static final private int Z_FILTERED=1; | |
112 | static final private int Z_HUFFMAN_ONLY=2; | |
113 | static final private int Z_DEFAULT_STRATEGY=0; | |
114 | ||
115 | static final private int Z_NO_FLUSH=0; | |
116 | static final private int Z_PARTIAL_FLUSH=1; | |
117 | static final private int Z_SYNC_FLUSH=2; | |
118 | static final private int Z_FULL_FLUSH=3; | |
119 | static final private int Z_FINISH=4; | |
120 | ||
121 | static final private int Z_OK=0; | |
122 | static final private int Z_STREAM_END=1; | |
123 | static final private int Z_NEED_DICT=2; | |
124 | static final private int Z_ERRNO=-1; | |
125 | static final private int Z_STREAM_ERROR=-2; | |
126 | static final private int Z_DATA_ERROR=-3; | |
127 | static final private int Z_MEM_ERROR=-4; | |
128 | static final private int Z_BUF_ERROR=-5; | |
129 | static final private int Z_VERSION_ERROR=-6; | |
130 | ||
131 | static final private int INIT_STATE=42; | |
132 | static final private int BUSY_STATE=113; | |
133 | static final private int FINISH_STATE=666; | |
134 | ||
135 | // The deflate compression method | |
136 | static final private int Z_DEFLATED=8; | |
137 | ||
138 | static final private int STORED_BLOCK=0; | |
139 | static final private int STATIC_TREES=1; | |
140 | static final private int DYN_TREES=2; | |
141 | ||
142 | // The three kinds of block type | |
143 | static final private int Z_BINARY=0; | |
144 | static final private int Z_ASCII=1; | |
145 | static final private int Z_UNKNOWN=2; | |
146 | ||
147 | static final private int Buf_size=8*2; | |
148 | ||
149 | // repeat previous bit length 3-6 times (2 bits of repeat count) | |
150 | static final private int REP_3_6=16; | |
151 | ||
152 | // repeat a zero length 3-10 times (3 bits of repeat count) | |
153 | static final private int REPZ_3_10=17; | |
154 | ||
155 | // repeat a zero length 11-138 times (7 bits of repeat count) | |
156 | static final private int REPZ_11_138=18; | |
157 | ||
158 | static final private int MIN_MATCH=3; | |
159 | static final private int MAX_MATCH=258; | |
160 | static final private int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1); | |
161 | ||
162 | static final private int MAX_BITS=15; | |
163 | static final private int D_CODES=30; | |
164 | static final private int BL_CODES=19; | |
165 | static final private int LENGTH_CODES=29; | |
166 | static final private int LITERALS=256; | |
167 | static final private int L_CODES=(LITERALS+1+LENGTH_CODES); | |
168 | static final private int HEAP_SIZE=(2*L_CODES+1); | |
169 | ||
170 | static final private int END_BLOCK=256; | |
171 | ||
172 | ZStream strm; // pointer back to this zlib stream | |
173 | int status; // as the name implies | |
174 | byte[] pending_buf; // output still pending | |
175 | int pending_buf_size; // size of pending_buf | |
176 | int pending_out; // next pending byte to output to the stream | |
177 | int pending; // nb of bytes in the pending buffer | |
178 | int noheader; // suppress zlib header and adler32 | |
179 | byte data_type; // UNKNOWN, BINARY or ASCII | |
180 | byte method; // STORED (for zip only) or DEFLATED | |
181 | int last_flush; // value of flush param for previous deflate call | |
182 | ||
183 | int w_size; // LZ77 window size (32K by default) | |
184 | int w_bits; // log2(w_size) (8..16) | |
185 | int w_mask; // w_size - 1 | |
186 | ||
187 | byte[] window; | |
188 | // Sliding window. Input bytes are read into the second half of the window, | |
189 | // and move to the first half later to keep a dictionary of at least wSize | |
190 | // bytes. With this organization, matches are limited to a distance of | |
191 | // wSize-MAX_MATCH bytes, but this ensures that IO is always | |
192 | // performed with a length multiple of the block size. Also, it limits | |
193 | // the window size to 64K, which is quite useful on MSDOS. | |
194 | // To do: use the user input buffer as sliding window. | |
195 | ||
196 | int window_size; | |
197 | // Actual size of window: 2*wSize, except when the user input buffer | |
198 | // is directly used as sliding window. | |
199 | ||
200 | short[] prev; | |
201 | // Link to older string with same hash index. To limit the size of this | |
202 | // array to 64K, this link is maintained only for the last 32K strings. | |
203 | // An index in this array is thus a window index modulo 32K. | |
204 | ||
205 | short[] head; // Heads of the hash chains or NIL. | |
206 | ||
207 | int ins_h; // hash index of string to be inserted | |
208 | int hash_size; // number of elements in hash table | |
209 | int hash_bits; // log2(hash_size) | |
210 | int hash_mask; // hash_size-1 | |
211 | ||
212 | // Number of bits by which ins_h must be shifted at each input | |
213 | // step. It must be such that after MIN_MATCH steps, the oldest | |
214 | // byte no longer takes part in the hash key, that is: | |
215 | // hash_shift * MIN_MATCH >= hash_bits | |
216 | int hash_shift; | |
217 | ||
218 | // Window position at the beginning of the current output block. Gets | |
219 | // negative when the window is moved backwards. | |
220 | ||
221 | int block_start; | |
222 | ||
223 | int match_length; // length of best match | |
224 | int prev_match; // previous match | |
225 | int match_available; // set if previous match exists | |
226 | int strstart; // start of string to insert | |
227 | int match_start; // start of matching string | |
228 | int lookahead; // number of valid bytes ahead in window | |
229 | ||
230 | // Length of the best match at previous step. Matches not greater than this | |
231 | // are discarded. This is used in the lazy match evaluation. | |
232 | int prev_length; | |
233 | ||
234 | // To speed up deflation, hash chains are never searched beyond this | |
235 | // length. A higher limit improves compression ratio but degrades the speed. | |
236 | int max_chain_length; | |
237 | ||
238 | // Attempt to find a better match only when the current match is strictly | |
239 | // smaller than this value. This mechanism is used only for compression | |
240 | // levels >= 4. | |
241 | int max_lazy_match; | |
242 | ||
243 | // Insert new strings in the hash table only if the match length is not | |
244 | // greater than this length. This saves time but degrades compression. | |
245 | // max_insert_length is used only for compression levels <= 3. | |
246 | ||
247 | int level; // compression level (1..9) | |
248 | int strategy; // favor or force Huffman coding | |
249 | ||
250 | // Use a faster search when the previous match is longer than this | |
251 | int good_match; | |
252 | ||
253 | // Stop searching when current match exceeds this | |
254 | int nice_match; | |
255 | ||
256 | short[] dyn_ltree; // literal and length tree | |
257 | short[] dyn_dtree; // distance tree | |
258 | short[] bl_tree; // Huffman tree for bit lengths | |
259 | ||
260 | Tree l_desc=new Tree(); // desc for literal tree | |
261 | Tree d_desc=new Tree(); // desc for distance tree | |
262 | Tree bl_desc=new Tree(); // desc for bit length tree | |
263 | ||
264 | // number of codes at each bit length for an optimal tree | |
265 | short[] bl_count=new short[MAX_BITS+1]; | |
266 | ||
267 | // heap used to build the Huffman trees | |
268 | int[] heap=new int[2*L_CODES+1]; | |
269 | ||
270 | int heap_len; // number of elements in the heap | |
271 | int heap_max; // element of largest frequency | |
272 | // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | |
273 | // The same heap array is used to build all trees. | |
274 | ||
275 | // Depth of each subtree used as tie breaker for trees of equal frequency | |
276 | byte[] depth=new byte[2*L_CODES+1]; | |
277 | ||
278 | int l_buf; // index for literals or lengths */ | |
279 | ||
280 | // Size of match buffer for literals/lengths. There are 4 reasons for | |
281 | // limiting lit_bufsize to 64K: | |
282 | // - frequencies can be kept in 16 bit counters | |
283 | // - if compression is not successful for the first block, all input | |
284 | // data is still in the window so we can still emit a stored block even | |
285 | // when input comes from standard input. (This can also be done for | |
286 | // all blocks if lit_bufsize is not greater than 32K.) | |
287 | // - if compression is not successful for a file smaller than 64K, we can | |
288 | // even emit a stored file instead of a stored block (saving 5 bytes). | |
289 | // This is applicable only for zip (not gzip or zlib). | |
290 | // - creating new Huffman trees less frequently may not provide fast | |
291 | // adaptation to changes in the input data statistics. (Take for | |
292 | // example a binary file with poorly compressible code followed by | |
293 | // a highly compressible string table.) Smaller buffer sizes give | |
294 | // fast adaptation but have of course the overhead of transmitting | |
295 | // trees more frequently. | |
296 | // - I can't count above 4 | |
297 | int lit_bufsize; | |
298 | ||
299 | int last_lit; // running index in l_buf | |
300 | ||
301 | // Buffer for distances. To simplify the code, d_buf and l_buf have | |
302 | // the same number of elements. To use different lengths, an extra flag | |
303 | // array would be necessary. | |
304 | ||
305 | int d_buf; // index of pendig_buf | |
306 | ||
307 | int opt_len; // bit length of current block with optimal trees | |
308 | int static_len; // bit length of current block with static trees | |
309 | int matches; // number of string matches in current block | |
310 | int last_eob_len; // bit length of EOB code for last block | |
311 | ||
312 | // Output buffer. bits are inserted starting at the bottom (least | |
313 | // significant bits). | |
314 | short bi_buf; | |
315 | ||
316 | // Number of valid bits in bi_buf. All bits above the last valid bit | |
317 | // are always zero. | |
318 | int bi_valid; | |
319 | ||
320 | Deflate(){ | |
321 | dyn_ltree=new short[HEAP_SIZE*2]; | |
322 | dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree | |
323 | bl_tree=new short[(2*BL_CODES+1)*2]; // Huffman tree for bit lengths | |
324 | } | |
325 | ||
326 | void lm_init() { | |
327 | window_size=2*w_size; | |
328 | ||
329 | head[hash_size-1]=0; | |
330 | for(int i=0; i<hash_size-1; i++){ | |
331 | head[i]=0; | |
332 | } | |
333 | ||
334 | // Set the default configuration parameters: | |
335 | max_lazy_match = Deflate.config_table[level].max_lazy; | |
336 | good_match = Deflate.config_table[level].good_length; | |
337 | nice_match = Deflate.config_table[level].nice_length; | |
338 | max_chain_length = Deflate.config_table[level].max_chain; | |
339 | ||
340 | strstart = 0; | |
341 | block_start = 0; | |
342 | lookahead = 0; | |
343 | match_length = prev_length = MIN_MATCH-1; | |
344 | match_available = 0; | |
345 | ins_h = 0; | |
346 | } | |
347 | ||
348 | // Initialize the tree data structures for a new zlib stream. | |
349 | void tr_init(){ | |
350 | ||
351 | l_desc.dyn_tree = dyn_ltree; | |
352 | l_desc.stat_desc = StaticTree.static_l_desc; | |
353 | ||
354 | d_desc.dyn_tree = dyn_dtree; | |
355 | d_desc.stat_desc = StaticTree.static_d_desc; | |
356 | ||
357 | bl_desc.dyn_tree = bl_tree; | |
358 | bl_desc.stat_desc = StaticTree.static_bl_desc; | |
359 | ||
360 | bi_buf = 0; | |
361 | bi_valid = 0; | |
362 | last_eob_len = 8; // enough lookahead for inflate | |
363 | ||
364 | // Initialize the first block of the first file: | |
365 | init_block(); | |
366 | } | |
367 | ||
368 | void init_block(){ | |
369 | // Initialize the trees. | |
370 | for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0; | |
371 | for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0; | |
372 | for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0; | |
373 | ||
374 | dyn_ltree[END_BLOCK*2] = 1; | |
375 | opt_len = static_len = 0; | |
376 | last_lit = matches = 0; | |
377 | } | |
378 | ||
379 | // Restore the heap property by moving down the tree starting at node k, | |
380 | // exchanging a node with the smallest of its two sons if necessary, stopping | |
381 | // when the heap property is re-established (each father smaller than its | |
382 | // two sons). | |
383 | void pqdownheap(short[] tree, // the tree to restore | |
384 | int k // node to move down | |
385 | ){ | |
386 | int v = heap[k]; | |
387 | int j = k << 1; // left son of k | |
388 | while (j <= heap_len) { | |
389 | // Set j to the smallest of the two sons: | |
390 | if (j < heap_len && | |
391 | smaller(tree, heap[j+1], heap[j], depth)){ | |
392 | j++; | |
393 | } | |
394 | // Exit if v is smaller than both sons | |
395 | if(smaller(tree, v, heap[j], depth)) break; | |
396 | ||
397 | // Exchange v with the smallest son | |
398 | heap[k]=heap[j]; k = j; | |
399 | // And continue down the tree, setting j to the left son of k | |
400 | j <<= 1; | |
401 | } | |
402 | heap[k] = v; | |
403 | } | |
404 | ||
405 | static boolean smaller(short[] tree, int n, int m, byte[] depth){ | |
406 | short tn2=tree[n*2]; | |
407 | short tm2=tree[m*2]; | |
408 | return (tn2<tm2 || | |
409 | (tn2==tm2 && depth[n] <= depth[m])); | |
410 | } | |
411 | ||
412 | // Scan a literal or distance tree to determine the frequencies of the codes | |
413 | // in the bit length tree. | |
414 | void scan_tree (short[] tree,// the tree to be scanned | |
415 | int max_code // and its largest code of non zero frequency | |
416 | ){ | |
417 | int n; // iterates over all tree elements | |
418 | int prevlen = -1; // last emitted length | |
419 | int curlen; // length of current code | |
420 | int nextlen = tree[0*2+1]; // length of next code | |
421 | int count = 0; // repeat count of the current code | |
422 | int max_count = 7; // max repeat count | |
423 | int min_count = 4; // min repeat count | |
424 | ||
425 | if (nextlen == 0){ max_count = 138; min_count = 3; } | |
426 | tree[(max_code+1)*2+1] = (short)0xffff; // guard | |
427 | ||
428 | for(n = 0; n <= max_code; n++) { | |
429 | curlen = nextlen; nextlen = tree[(n+1)*2+1]; | |
430 | if(++count < max_count && curlen == nextlen) { | |
431 | continue; | |
432 | } | |
433 | else if(count < min_count) { | |
434 | bl_tree[curlen*2] += count; | |
435 | } | |
436 | else if(curlen != 0) { | |
437 | if(curlen != prevlen) bl_tree[curlen*2]++; | |
438 | bl_tree[REP_3_6*2]++; | |
439 | } | |
440 | else if(count <= 10) { | |
441 | bl_tree[REPZ_3_10*2]++; | |
442 | } | |
443 | else{ | |
444 | bl_tree[REPZ_11_138*2]++; | |
445 | } | |
446 | count = 0; prevlen = curlen; | |
447 | if(nextlen == 0) { | |
448 | max_count = 138; min_count = 3; | |
449 | } | |
450 | else if(curlen == nextlen) { | |
451 | max_count = 6; min_count = 3; | |
452 | } | |
453 | else{ | |
454 | max_count = 7; min_count = 4; | |
455 | } | |
456 | } | |
457 | } | |
458 | ||
459 | // Construct the Huffman tree for the bit lengths and return the index in | |
460 | // bl_order of the last bit length code to send. | |
461 | int build_bl_tree(){ | |
462 | int max_blindex; // index of last bit length code of non zero freq | |
463 | ||
464 | // Determine the bit length frequencies for literal and distance trees | |
465 | scan_tree(dyn_ltree, l_desc.max_code); | |
466 | scan_tree(dyn_dtree, d_desc.max_code); | |
467 | ||
468 | // Build the bit length tree: | |
469 | bl_desc.build_tree(this); | |
470 | // opt_len now includes the length of the tree representations, except | |
471 | // the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | |
472 | ||
473 | // Determine the number of bit length codes to send. The pkzip format | |
474 | // requires that at least 4 bit length codes be sent. (appnote.txt says | |
475 | // 3 but the actual value used is 4.) | |
476 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | |
477 | if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break; | |
478 | } | |
479 | // Update opt_len to include the bit length tree and counts | |
480 | opt_len += 3*(max_blindex+1) + 5+5+4; | |
481 | ||
482 | return max_blindex; | |
483 | } | |
484 | ||
485 | ||
486 | // Send the header for a block using dynamic Huffman trees: the counts, the | |
487 | // lengths of the bit length codes, the literal tree and the distance tree. | |
488 | // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | |
489 | void send_all_trees(int lcodes, int dcodes, int blcodes){ | |
490 | int rank; // index in bl_order | |
491 | ||
492 | send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt | |
493 | send_bits(dcodes-1, 5); | |
494 | send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt | |
495 | for (rank = 0; rank < blcodes; rank++) { | |
496 | send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3); | |
497 | } | |
498 | send_tree(dyn_ltree, lcodes-1); // literal tree | |
499 | send_tree(dyn_dtree, dcodes-1); // distance tree | |
500 | } | |
501 | ||
502 | // Send a literal or distance tree in compressed form, using the codes in | |
503 | // bl_tree. | |
504 | void send_tree (short[] tree,// the tree to be sent | |
505 | int max_code // and its largest code of non zero frequency | |
506 | ){ | |
507 | int n; // iterates over all tree elements | |
508 | int prevlen = -1; // last emitted length | |
509 | int curlen; // length of current code | |
510 | int nextlen = tree[0*2+1]; // length of next code | |
511 | int count = 0; // repeat count of the current code | |
512 | int max_count = 7; // max repeat count | |
513 | int min_count = 4; // min repeat count | |
514 | ||
515 | if (nextlen == 0){ max_count = 138; min_count = 3; } | |
516 | ||
517 | for (n = 0; n <= max_code; n++) { | |
518 | curlen = nextlen; nextlen = tree[(n+1)*2+1]; | |
519 | if(++count < max_count && curlen == nextlen) { | |
520 | continue; | |
521 | } | |
522 | else if(count < min_count) { | |
523 | do { send_code(curlen, bl_tree); } while (--count != 0); | |
524 | } | |
525 | else if(curlen != 0){ | |
526 | if(curlen != prevlen){ | |
527 | send_code(curlen, bl_tree); count--; | |
528 | } | |
529 | send_code(REP_3_6, bl_tree); | |
530 | send_bits(count-3, 2); | |
531 | } | |
532 | else if(count <= 10){ | |
533 | send_code(REPZ_3_10, bl_tree); | |
534 | send_bits(count-3, 3); | |
535 | } | |
536 | else{ | |
537 | send_code(REPZ_11_138, bl_tree); | |
538 | send_bits(count-11, 7); | |
539 | } | |
540 | count = 0; prevlen = curlen; | |
541 | if(nextlen == 0){ | |
542 | max_count = 138; min_count = 3; | |
543 | } | |
544 | else if(curlen == nextlen){ | |
545 | max_count = 6; min_count = 3; | |
546 | } | |
547 | else{ | |
548 | max_count = 7; min_count = 4; | |
549 | } | |
550 | } | |
551 | } | |
552 | ||
553 | // Output a byte on the stream. | |
554 | // IN assertion: there is enough room in pending_buf. | |
555 | final void put_byte(byte[] p, int start, int len){ | |
556 | System.arraycopy(p, start, pending_buf, pending, len); | |
557 | pending+=len; | |
558 | } | |
559 | ||
560 | final void put_byte(byte c){ | |
561 | pending_buf[pending++]=c; | |
562 | } | |
563 | final void put_short(int w) { | |
564 | put_byte((byte)(w/*&0xff*/)); | |
565 | put_byte((byte)(w>>>8)); | |
566 | } | |
567 | final void putShortMSB(int b){ | |
568 | put_byte((byte)(b>>8)); | |
569 | put_byte((byte)(b/*&0xff*/)); | |
570 | } | |
571 | ||
572 | final void send_code(int c, short[] tree){ | |
573 | int c2=c*2; | |
574 | send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff)); | |
575 | } | |
576 | ||
577 | void send_bits(int value, int length){ | |
578 | int len = length; | |
579 | if (bi_valid > (int)Buf_size - len) { | |
580 | int val = value; | |
581 | // bi_buf |= (val << bi_valid); | |
582 | bi_buf |= ((val << bi_valid)&0xffff); | |
583 | put_short(bi_buf); | |
584 | bi_buf = (short)(val >>> (Buf_size - bi_valid)); | |
585 | bi_valid += len - Buf_size; | |
586 | } else { | |
587 | // bi_buf |= (value) << bi_valid; | |
588 | bi_buf |= (((value) << bi_valid)&0xffff); | |
589 | bi_valid += len; | |
590 | } | |
591 | } | |
592 | ||
593 | // Send one empty static block to give enough lookahead for inflate. | |
594 | // This takes 10 bits, of which 7 may remain in the bit buffer. | |
595 | // The current inflate code requires 9 bits of lookahead. If the | |
596 | // last two codes for the previous block (real code plus EOB) were coded | |
597 | // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | |
598 | // the last real code. In this case we send two empty static blocks instead | |
599 | // of one. (There are no problems if the previous block is stored or fixed.) | |
600 | // To simplify the code, we assume the worst case of last real code encoded | |
601 | // on one bit only. | |
602 | void _tr_align(){ | |
603 | send_bits(STATIC_TREES<<1, 3); | |
604 | send_code(END_BLOCK, StaticTree.static_ltree); | |
605 | ||
606 | bi_flush(); | |
607 | ||
608 | // Of the 10 bits for the empty block, we have already sent | |
609 | // (10 - bi_valid) bits. The lookahead for the last real code (before | |
610 | // the EOB of the previous block) was thus at least one plus the length | |
611 | // of the EOB plus what we have just sent of the empty static block. | |
612 | if (1 + last_eob_len + 10 - bi_valid < 9) { | |
613 | send_bits(STATIC_TREES<<1, 3); | |
614 | send_code(END_BLOCK, StaticTree.static_ltree); | |
615 | bi_flush(); | |
616 | } | |
617 | last_eob_len = 7; | |
618 | } | |
619 | ||
620 | ||
621 | // Save the match info and tally the frequency counts. Return true if | |
622 | // the current block must be flushed. | |
623 | boolean _tr_tally (int dist, // distance of matched string | |
624 | int lc // match length-MIN_MATCH or unmatched char (if dist==0) | |
625 | ){ | |
626 | ||
627 | pending_buf[d_buf+last_lit*2] = (byte)(dist>>>8); | |
628 | pending_buf[d_buf+last_lit*2+1] = (byte)dist; | |
629 | ||
630 | pending_buf[l_buf+last_lit] = (byte)lc; last_lit++; | |
631 | ||
632 | if (dist == 0) { | |
633 | // lc is the unmatched char | |
634 | dyn_ltree[lc*2]++; | |
635 | } | |
636 | else { | |
637 | matches++; | |
638 | // Here, lc is the match length - MIN_MATCH | |
639 | dist--; // dist = match distance - 1 | |
640 | dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++; | |
641 | dyn_dtree[Tree.d_code(dist)*2]++; | |
642 | } | |
643 | ||
644 | if ((last_lit & 0x1fff) == 0 && level > 2) { | |
645 | // Compute an upper bound for the compressed length | |
646 | int out_length = last_lit*8; | |
647 | int in_length = strstart - block_start; | |
648 | int dcode; | |
649 | for (dcode = 0; dcode < D_CODES; dcode++) { | |
650 | out_length += (int)dyn_dtree[dcode*2] * | |
651 | (5L+Tree.extra_dbits[dcode]); | |
652 | } | |
653 | out_length >>>= 3; | |
654 | if ((matches < (last_lit/2)) && out_length < in_length/2) return true; | |
655 | } | |
656 | ||
657 | return (last_lit == lit_bufsize-1); | |
658 | // We avoid equality with lit_bufsize because of wraparound at 64K | |
659 | // on 16 bit machines and because stored blocks are restricted to | |
660 | // 64K-1 bytes. | |
661 | } | |
662 | ||
663 | // Send the block data compressed using the given Huffman trees | |
664 | void compress_block(short[] ltree, short[] dtree){ | |
665 | int dist; // distance of matched string | |
666 | int lc; // match length or unmatched char (if dist == 0) | |
667 | int lx = 0; // running index in l_buf | |
668 | int code; // the code to send | |
669 | int extra; // number of extra bits to send | |
670 | ||
671 | if (last_lit != 0){ | |
672 | do{ | |
673 | dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)| | |
674 | (pending_buf[d_buf+lx*2+1]&0xff); | |
675 | lc=(pending_buf[l_buf+lx])&0xff; lx++; | |
676 | ||
677 | if(dist == 0){ | |
678 | send_code(lc, ltree); // send a literal byte | |
679 | } | |
680 | else{ | |
681 | // Here, lc is the match length - MIN_MATCH | |
682 | code = Tree._length_code[lc]; | |
683 | ||
684 | send_code(code+LITERALS+1, ltree); // send the length code | |
685 | extra = Tree.extra_lbits[code]; | |
686 | if(extra != 0){ | |
687 | lc -= Tree.base_length[code]; | |
688 | send_bits(lc, extra); // send the extra length bits | |
689 | } | |
690 | dist--; // dist is now the match distance - 1 | |
691 | code = Tree.d_code(dist); | |
692 | ||
693 | send_code(code, dtree); // send the distance code | |
694 | extra = Tree.extra_dbits[code]; | |
695 | if (extra != 0) { | |
696 | dist -= Tree.base_dist[code]; | |
697 | send_bits(dist, extra); // send the extra distance bits | |
698 | } | |
699 | } // literal or match pair ? | |
700 | ||
701 | // Check that the overlay between pending_buf and d_buf+l_buf is ok: | |
702 | } | |
703 | while (lx < last_lit); | |
704 | } | |
705 | ||
706 | send_code(END_BLOCK, ltree); | |
707 | last_eob_len = ltree[END_BLOCK*2+1]; | |
708 | } | |
709 | ||
710 | // Set the data type to ASCII or BINARY, using a crude approximation: | |
711 | // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | |
712 | // IN assertion: the fields freq of dyn_ltree are set and the total of all | |
713 | // frequencies does not exceed 64K (to fit in an int on 16 bit machines). | |
714 | void set_data_type(){ | |
715 | int n = 0; | |
716 | int ascii_freq = 0; | |
717 | int bin_freq = 0; | |
718 | while(n<7){ bin_freq += dyn_ltree[n*2]; n++;} | |
719 | while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;} | |
720 | while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;} | |
721 | data_type=(byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII); | |
722 | } | |
723 | ||
724 | // Flush the bit buffer, keeping at most 7 bits in it. | |
725 | void bi_flush(){ | |
726 | if (bi_valid == 16) { | |
727 | put_short(bi_buf); | |
728 | bi_buf=0; | |
729 | bi_valid=0; | |
730 | } | |
731 | else if (bi_valid >= 8) { | |
732 | put_byte((byte)bi_buf); | |
733 | bi_buf>>>=8; | |
734 | bi_valid-=8; | |
735 | } | |
736 | } | |
737 | ||
738 | // Flush the bit buffer and align the output on a byte boundary | |
739 | void bi_windup(){ | |
740 | if (bi_valid > 8) { | |
741 | put_short(bi_buf); | |
742 | } else if (bi_valid > 0) { | |
743 | put_byte((byte)bi_buf); | |
744 | } | |
745 | bi_buf = 0; | |
746 | bi_valid = 0; | |
747 | } | |
748 | ||
749 | // Copy a stored block, storing first the length and its | |
750 | // one's complement if requested. | |
751 | void copy_block(int buf, // the input data | |
752 | int len, // its length | |
753 | boolean header // true if block header must be written | |
754 | ){ | |
755 | int index=0; | |
756 | bi_windup(); // align on byte boundary | |
757 | last_eob_len = 8; // enough lookahead for inflate | |
758 | ||
759 | if (header) { | |
760 | put_short((short)len); | |
761 | put_short((short)~len); | |
762 | } | |
763 | ||
764 | // while(len--!=0) { | |
765 | // put_byte(window[buf+index]); | |
766 | // index++; | |
767 | // } | |
768 | put_byte(window, buf, len); | |
769 | } | |
770 | ||
771 | void flush_block_only(boolean eof){ | |
772 | _tr_flush_block(block_start>=0 ? block_start : -1, | |
773 | strstart-block_start, | |
774 | eof); | |
775 | block_start=strstart; | |
776 | strm.flush_pending(); | |
777 | } | |
778 | ||
779 | // Copy without compression as much as possible from the input stream, return | |
780 | // the current block state. | |
781 | // This function does not insert new strings in the dictionary since | |
782 | // uncompressible data is probably not useful. This function is used | |
783 | // only for the level=0 compression option. | |
784 | // NOTE: this function should be optimized to avoid extra copying from | |
785 | // window to pending_buf. | |
786 | int deflate_stored(int flush){ | |
787 | // Stored blocks are limited to 0xffff bytes, pending_buf is limited | |
788 | // to pending_buf_size, and each stored block has a 5 byte header: | |
789 | ||
790 | int max_block_size = 0xffff; | |
791 | int max_start; | |
792 | ||
793 | if(max_block_size > pending_buf_size - 5) { | |
794 | max_block_size = pending_buf_size - 5; | |
795 | } | |
796 | ||
797 | // Copy as much as possible from input to output: | |
798 | while(true){ | |
799 | // Fill the window as much as possible: | |
800 | if(lookahead<=1){ | |
801 | fill_window(); | |
802 | if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore; | |
803 | if(lookahead==0) break; // flush the current block | |
804 | } | |
805 | ||
806 | strstart+=lookahead; | |
807 | lookahead=0; | |
808 | ||
809 | // Emit a stored block if pending_buf will be full: | |
810 | max_start=block_start+max_block_size; | |
811 | if(strstart==0|| strstart>=max_start) { | |
812 | // strstart == 0 is possible when wraparound on 16-bit machine | |
813 | lookahead = (int)(strstart-max_start); | |
814 | strstart = (int)max_start; | |
815 | ||
816 | flush_block_only(false); | |
817 | if(strm.avail_out==0) return NeedMore; | |
818 | ||
819 | } | |
820 | ||
821 | // Flush if we may have to slide, otherwise block_start may become | |
822 | // negative and the data will be gone: | |
823 | if(strstart-block_start >= w_size-MIN_LOOKAHEAD) { | |
824 | flush_block_only(false); | |
825 | if(strm.avail_out==0) return NeedMore; | |
826 | } | |
827 | } | |
828 | ||
829 | flush_block_only(flush == Z_FINISH); | |
830 | if(strm.avail_out==0) | |
831 | return (flush == Z_FINISH) ? FinishStarted : NeedMore; | |
832 | ||
833 | return flush == Z_FINISH ? FinishDone : BlockDone; | |
834 | } | |
835 | ||
836 | // Send a stored block | |
837 | void _tr_stored_block(int buf, // input block | |
838 | int stored_len, // length of input block | |
839 | boolean eof // true if this is the last block for a file | |
840 | ){ | |
841 | send_bits((STORED_BLOCK<<1)+(eof?1:0), 3); // send block type | |
842 | copy_block(buf, stored_len, true); // with header | |
843 | } | |
844 | ||
845 | // Determine the best encoding for the current block: dynamic trees, static | |
846 | // trees or store, and output the encoded block to the zip file. | |
847 | void _tr_flush_block(int buf, // input block, or NULL if too old | |
848 | int stored_len, // length of input block | |
849 | boolean eof // true if this is the last block for a file | |
850 | ) { | |
851 | int opt_lenb, static_lenb;// opt_len and static_len in bytes | |
852 | int max_blindex = 0; // index of last bit length code of non zero freq | |
853 | ||
854 | // Build the Huffman trees unless a stored block is forced | |
855 | if(level > 0) { | |
856 | // Check if the file is ascii or binary | |
857 | if(data_type == Z_UNKNOWN) set_data_type(); | |
858 | ||
859 | // Construct the literal and distance trees | |
860 | l_desc.build_tree(this); | |
861 | ||
862 | d_desc.build_tree(this); | |
863 | ||
864 | // At this point, opt_len and static_len are the total bit lengths of | |
865 | // the compressed block data, excluding the tree representations. | |
866 | ||
867 | // Build the bit length tree for the above two trees, and get the index | |
868 | // in bl_order of the last bit length code to send. | |
869 | max_blindex=build_bl_tree(); | |
870 | ||
871 | // Determine the best encoding. Compute first the block length in bytes | |
872 | opt_lenb=(opt_len+3+7)>>>3; | |
873 | static_lenb=(static_len+3+7)>>>3; | |
874 | ||
875 | if(static_lenb<=opt_lenb) opt_lenb=static_lenb; | |
876 | } | |
877 | else { | |
878 | opt_lenb=static_lenb=stored_len+5; // force a stored block | |
879 | } | |
880 | ||
881 | if(stored_len+4<=opt_lenb && buf != -1){ | |
882 | // 4: two words for the lengths | |
883 | // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | |
884 | // Otherwise we can't have processed more than WSIZE input bytes since | |
885 | // the last block flush, because compression would have been | |
886 | // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | |
887 | // transform a block into a stored block. | |
888 | _tr_stored_block(buf, stored_len, eof); | |
889 | } | |
890 | else if(static_lenb == opt_lenb){ | |
891 | send_bits((STATIC_TREES<<1)+(eof?1:0), 3); | |
892 | compress_block(StaticTree.static_ltree, StaticTree.static_dtree); | |
893 | } | |
894 | else{ | |
895 | send_bits((DYN_TREES<<1)+(eof?1:0), 3); | |
896 | send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1); | |
897 | compress_block(dyn_ltree, dyn_dtree); | |
898 | } | |
899 | ||
900 | // The above check is made mod 2^32, for files larger than 512 MB | |
901 | // and uLong implemented on 32 bits. | |
902 | ||
903 | init_block(); | |
904 | ||
905 | if(eof){ | |
906 | bi_windup(); | |
907 | } | |
908 | } | |
909 | ||
910 | // Fill the window when the lookahead becomes insufficient. | |
911 | // Updates strstart and lookahead. | |
912 | // | |
913 | // IN assertion: lookahead < MIN_LOOKAHEAD | |
914 | // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | |
915 | // At least one byte has been read, or avail_in == 0; reads are | |
916 | // performed for at least two bytes (required for the zip translate_eol | |
917 | // option -- not supported here). | |
918 | void fill_window(){ | |
919 | int n, m; | |
920 | int p; | |
921 | int more; // Amount of free space at the end of the window. | |
922 | ||
923 | do{ | |
924 | more = (window_size-lookahead-strstart); | |
925 | ||
926 | // Deal with !@#$% 64K limit: | |
927 | if(more==0 && strstart==0 && lookahead==0){ | |
928 | more = w_size; | |
929 | } | |
930 | else if(more==-1) { | |
931 | // Very unlikely, but possible on 16 bit machine if strstart == 0 | |
932 | // and lookahead == 1 (input done one byte at time) | |
933 | more--; | |
934 | ||
935 | // If the window is almost full and there is insufficient lookahead, | |
936 | // move the upper half to the lower one to make room in the upper half. | |
937 | } | |
938 | else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) { | |
939 | System.arraycopy(window, w_size, window, 0, w_size); | |
940 | match_start-=w_size; | |
941 | strstart-=w_size; // we now have strstart >= MAX_DIST | |
942 | block_start-=w_size; | |
943 | ||
944 | // Slide the hash table (could be avoided with 32 bit values | |
945 | // at the expense of memory usage). We slide even when level == 0 | |
946 | // to keep the hash table consistent if we switch back to level > 0 | |
947 | // later. (Using level 0 permanently is not an optimal usage of | |
948 | // zlib, so we don't care about this pathological case.) | |
949 | ||
950 | n = hash_size; | |
951 | p=n; | |
952 | do { | |
953 | m = (head[--p]&0xffff); | |
954 | head[p]=(m>=w_size ? (short)(m-w_size) : 0); | |
955 | } | |
956 | while (--n != 0); | |
957 | ||
958 | n = w_size; | |
959 | p = n; | |
960 | do { | |
961 | m = (prev[--p]&0xffff); | |
962 | prev[p] = (m >= w_size ? (short)(m-w_size) : 0); | |
963 | // If n is not on any hash chain, prev[n] is garbage but | |
964 | // its value will never be used. | |
965 | } | |
966 | while (--n!=0); | |
967 | more += w_size; | |
968 | } | |
969 | ||
970 | if (strm.avail_in == 0) return; | |
971 | ||
972 | // If there was no sliding: | |
973 | // strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |
974 | // more == window_size - lookahead - strstart | |
975 | // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |
976 | // => more >= window_size - 2*WSIZE + 2 | |
977 | // In the BIG_MEM or MMAP case (not yet supported), | |
978 | // window_size == input_size + MIN_LOOKAHEAD && | |
979 | // strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |
980 | // Otherwise, window_size == 2*WSIZE so more >= 2. | |
981 | // If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |
982 | ||
983 | n = strm.read_buf(window, strstart + lookahead, more); | |
984 | lookahead += n; | |
985 | ||
986 | // Initialize the hash value now that we have some input: | |
987 | if(lookahead >= MIN_MATCH) { | |
988 | ins_h = window[strstart]&0xff; | |
989 | ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; | |
990 | } | |
991 | // If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |
992 | // but this is not important since only literal bytes will be emitted. | |
993 | } | |
994 | while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0); | |
995 | } | |
996 | ||
997 | // Compress as much as possible from the input stream, return the current | |
998 | // block state. | |
999 | // This function does not perform lazy evaluation of matches and inserts | |
1000 | // new strings in the dictionary only for unmatched strings or for short | |
1001 | // matches. It is used only for the fast compression options. | |
1002 | int deflate_fast(int flush){ | |
1003 | // short hash_head = 0; // head of the hash chain | |
1004 | int hash_head = 0; // head of the hash chain | |
1005 | boolean bflush; // set if current block must be flushed | |
1006 | ||
1007 | while(true){ | |
1008 | // Make sure that we always have enough lookahead, except | |
1009 | // at the end of the input file. We need MAX_MATCH bytes | |
1010 | // for the next match, plus MIN_MATCH bytes to insert the | |
1011 | // string following the next match. | |
1012 | if(lookahead < MIN_LOOKAHEAD){ | |
1013 | fill_window(); | |
1014 | if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){ | |
1015 | return NeedMore; | |
1016 | } | |
1017 | if(lookahead == 0) break; // flush the current block | |
1018 | } | |
1019 | ||
1020 | // Insert the string window[strstart .. strstart+2] in the | |
1021 | // dictionary, and set hash_head to the head of the hash chain: | |
1022 | if(lookahead >= MIN_MATCH){ | |
1023 | ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1024 | ||
1025 | // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1026 | hash_head=(head[ins_h]&0xffff); | |
1027 | prev[strstart&w_mask]=head[ins_h]; | |
1028 | head[ins_h]=(short)strstart; | |
1029 | } | |
1030 | ||
1031 | // Find the longest match, discarding those <= prev_length. | |
1032 | // At this point we have always match_length < MIN_MATCH | |
1033 | ||
1034 | if(hash_head!=0L && | |
1035 | ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD | |
1036 | ){ | |
1037 | // To simplify the code, we prevent matches with the string | |
1038 | // of window index 0 (in particular we have to avoid a match | |
1039 | // of the string with itself at the start of the input file). | |
1040 | if(strategy != Z_HUFFMAN_ONLY){ | |
1041 | match_length=longest_match (hash_head); | |
1042 | } | |
1043 | // longest_match() sets match_start | |
1044 | } | |
1045 | if(match_length>=MIN_MATCH){ | |
1046 | // check_match(strstart, match_start, match_length); | |
1047 | ||
1048 | bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH); | |
1049 | ||
1050 | lookahead -= match_length; | |
1051 | ||
1052 | // Insert new strings in the hash table only if the match length | |
1053 | // is not too large. This saves time but degrades compression. | |
1054 | if(match_length <= max_lazy_match && | |
1055 | lookahead >= MIN_MATCH) { | |
1056 | match_length--; // string at strstart already in hash table | |
1057 | do{ | |
1058 | strstart++; | |
1059 | ||
1060 | ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1061 | // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1062 | hash_head=(head[ins_h]&0xffff); | |
1063 | prev[strstart&w_mask]=head[ins_h]; | |
1064 | head[ins_h]=(short)strstart; | |
1065 | ||
1066 | // strstart never exceeds WSIZE-MAX_MATCH, so there are | |
1067 | // always MIN_MATCH bytes ahead. | |
1068 | } | |
1069 | while (--match_length != 0); | |
1070 | strstart++; | |
1071 | } | |
1072 | else{ | |
1073 | strstart += match_length; | |
1074 | match_length = 0; | |
1075 | ins_h = window[strstart]&0xff; | |
1076 | ||
1077 | ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; | |
1078 | // If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |
1079 | // matter since it will be recomputed at next deflate call. | |
1080 | } | |
1081 | } | |
1082 | else { | |
1083 | // No match, output a literal byte | |
1084 | ||
1085 | bflush=_tr_tally(0, window[strstart]&0xff); | |
1086 | lookahead--; | |
1087 | strstart++; | |
1088 | } | |
1089 | if (bflush){ | |
1090 | ||
1091 | flush_block_only(false); | |
1092 | if(strm.avail_out==0) return NeedMore; | |
1093 | } | |
1094 | } | |
1095 | ||
1096 | flush_block_only(flush == Z_FINISH); | |
1097 | if(strm.avail_out==0){ | |
1098 | if(flush == Z_FINISH) return FinishStarted; | |
1099 | else return NeedMore; | |
1100 | } | |
1101 | return flush==Z_FINISH ? FinishDone : BlockDone; | |
1102 | } | |
1103 | ||
1104 | // Same as above, but achieves better compression. We use a lazy | |
1105 | // evaluation for matches: a match is finally adopted only if there is | |
1106 | // no better match at the next window position. | |
1107 | int deflate_slow(int flush){ | |
1108 | // short hash_head = 0; // head of hash chain | |
1109 | int hash_head = 0; // head of hash chain | |
1110 | boolean bflush; // set if current block must be flushed | |
1111 | ||
1112 | // Process the input block. | |
1113 | while(true){ | |
1114 | // Make sure that we always have enough lookahead, except | |
1115 | // at the end of the input file. We need MAX_MATCH bytes | |
1116 | // for the next match, plus MIN_MATCH bytes to insert the | |
1117 | // string following the next match. | |
1118 | ||
1119 | if (lookahead < MIN_LOOKAHEAD) { | |
1120 | fill_window(); | |
1121 | if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1122 | return NeedMore; | |
1123 | } | |
1124 | if(lookahead == 0) break; // flush the current block | |
1125 | } | |
1126 | ||
1127 | // Insert the string window[strstart .. strstart+2] in the | |
1128 | // dictionary, and set hash_head to the head of the hash chain: | |
1129 | ||
1130 | if(lookahead >= MIN_MATCH) { | |
1131 | ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask; | |
1132 | // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1133 | hash_head=(head[ins_h]&0xffff); | |
1134 | prev[strstart&w_mask]=head[ins_h]; | |
1135 | head[ins_h]=(short)strstart; | |
1136 | } | |
1137 | ||
1138 | // Find the longest match, discarding those <= prev_length. | |
1139 | prev_length = match_length; prev_match = match_start; | |
1140 | match_length = MIN_MATCH-1; | |
1141 | ||
1142 | if (hash_head != 0 && prev_length < max_lazy_match && | |
1143 | ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD | |
1144 | ){ | |
1145 | // To simplify the code, we prevent matches with the string | |
1146 | // of window index 0 (in particular we have to avoid a match | |
1147 | // of the string with itself at the start of the input file). | |
1148 | ||
1149 | if(strategy != Z_HUFFMAN_ONLY) { | |
1150 | match_length = longest_match(hash_head); | |
1151 | } | |
1152 | // longest_match() sets match_start | |
1153 | ||
1154 | if (match_length <= 5 && (strategy == Z_FILTERED || | |
1155 | (match_length == MIN_MATCH && | |
1156 | strstart - match_start > 4096))) { | |
1157 | ||
1158 | // If prev_match is also MIN_MATCH, match_start is garbage | |
1159 | // but we will ignore the current match anyway. | |
1160 | match_length = MIN_MATCH-1; | |
1161 | } | |
1162 | } | |
1163 | ||
1164 | // If there was a match at the previous step and the current | |
1165 | // match is not better, output the previous match: | |
1166 | if(prev_length >= MIN_MATCH && match_length <= prev_length) { | |
1167 | int max_insert = strstart + lookahead - MIN_MATCH; | |
1168 | // Do not insert strings in hash table beyond this. | |
1169 | ||
1170 | // check_match(strstart-1, prev_match, prev_length); | |
1171 | ||
1172 | bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH); | |
1173 | ||
1174 | // Insert in hash table all strings up to the end of the match. | |
1175 | // strstart-1 and strstart are already inserted. If there is not | |
1176 | // enough lookahead, the last two strings are not inserted in | |
1177 | // the hash table. | |
1178 | lookahead -= prev_length-1; | |
1179 | prev_length -= 2; | |
1180 | do{ | |
1181 | if(++strstart <= max_insert) { | |
1182 | ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1183 | //prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1184 | hash_head=(head[ins_h]&0xffff); | |
1185 | prev[strstart&w_mask]=head[ins_h]; | |
1186 | head[ins_h]=(short)strstart; | |
1187 | } | |
1188 | } | |
1189 | while(--prev_length != 0); | |
1190 | match_available = 0; | |
1191 | match_length = MIN_MATCH-1; | |
1192 | strstart++; | |
1193 | ||
1194 | if (bflush){ | |
1195 | flush_block_only(false); | |
1196 | if(strm.avail_out==0) return NeedMore; | |
1197 | } | |
1198 | } else if (match_available!=0) { | |
1199 | ||
1200 | // If there was no match at the previous position, output a | |
1201 | // single literal. If there was a match but the current match | |
1202 | // is longer, truncate the previous match to a single literal. | |
1203 | ||
1204 | bflush=_tr_tally(0, window[strstart-1]&0xff); | |
1205 | ||
1206 | if (bflush) { | |
1207 | flush_block_only(false); | |
1208 | } | |
1209 | strstart++; | |
1210 | lookahead--; | |
1211 | if(strm.avail_out == 0) return NeedMore; | |
1212 | } else { | |
1213 | // There is no previous match to compare with, wait for | |
1214 | // the next step to decide. | |
1215 | ||
1216 | match_available = 1; | |
1217 | strstart++; | |
1218 | lookahead--; | |
1219 | } | |
1220 | } | |
1221 | ||
1222 | if(match_available!=0) { | |
1223 | bflush=_tr_tally(0, window[strstart-1]&0xff); | |
1224 | match_available = 0; | |
1225 | } | |
1226 | flush_block_only(flush == Z_FINISH); | |
1227 | ||
1228 | if(strm.avail_out==0){ | |
1229 | if(flush == Z_FINISH) return FinishStarted; | |
1230 | else return NeedMore; | |
1231 | } | |
1232 | ||
1233 | return flush == Z_FINISH ? FinishDone : BlockDone; | |
1234 | } | |
1235 | ||
1236 | int longest_match(int cur_match){ | |
1237 | int chain_length = max_chain_length; // max hash chain length | |
1238 | int scan = strstart; // current string | |
1239 | int match; // matched string | |
1240 | int len; // length of current match | |
1241 | int best_len = prev_length; // best match length so far | |
1242 | int limit = strstart>(w_size-MIN_LOOKAHEAD) ? | |
1243 | strstart-(w_size-MIN_LOOKAHEAD) : 0; | |
1244 | int nice_match=this.nice_match; | |
1245 | ||
1246 | // Stop when cur_match becomes <= limit. To simplify the code, | |
1247 | // we prevent matches with the string of window index 0. | |
1248 | ||
1249 | int wmask = w_mask; | |
1250 | ||
1251 | int strend = strstart + MAX_MATCH; | |
1252 | byte scan_end1 = window[scan+best_len-1]; | |
1253 | byte scan_end = window[scan+best_len]; | |
1254 | ||
1255 | // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
1256 | // It is easy to get rid of this optimization if necessary. | |
1257 | ||
1258 | // Do not waste too much time if we already have a good match: | |
1259 | if (prev_length >= good_match) { | |
1260 | chain_length >>= 2; | |
1261 | } | |
1262 | ||
1263 | // Do not look for matches beyond the end of the input. This is necessary | |
1264 | // to make deflate deterministic. | |
1265 | if (nice_match > lookahead) nice_match = lookahead; | |
1266 | ||
1267 | do { | |
1268 | match = cur_match; | |
1269 | ||
1270 | // Skip to next match if the match length cannot increase | |
1271 | // or if the match length is less than 2: | |
1272 | if (window[match+best_len] != scan_end || | |
1273 | window[match+best_len-1] != scan_end1 || | |
1274 | window[match] != window[scan] || | |
1275 | window[++match] != window[scan+1]) continue; | |
1276 | ||
1277 | // The check at best_len-1 can be removed because it will be made | |
1278 | // again later. (This heuristic is not always a win.) | |
1279 | // It is not necessary to compare scan[2] and match[2] since they | |
1280 | // are always equal when the other bytes match, given that | |
1281 | // the hash keys are equal and that HASH_BITS >= 8. | |
1282 | scan += 2; match++; | |
1283 | ||
1284 | // We check for insufficient lookahead only every 8th comparison; | |
1285 | // the 256th check will be made at strstart+258. | |
1286 | do { | |
1287 | } while (window[++scan] == window[++match] && | |
1288 | window[++scan] == window[++match] && | |
1289 | window[++scan] == window[++match] && | |
1290 | window[++scan] == window[++match] && | |
1291 | window[++scan] == window[++match] && | |
1292 | window[++scan] == window[++match] && | |
1293 | window[++scan] == window[++match] && | |
1294 | window[++scan] == window[++match] && | |
1295 | scan < strend); | |
1296 | ||
1297 | len = MAX_MATCH - (int)(strend - scan); | |
1298 | scan = strend - MAX_MATCH; | |
1299 | ||
1300 | if(len>best_len) { | |
1301 | match_start = cur_match; | |
1302 | best_len = len; | |
1303 | if (len >= nice_match) break; | |
1304 | scan_end1 = window[scan+best_len-1]; | |
1305 | scan_end = window[scan+best_len]; | |
1306 | } | |
1307 | ||
1308 | } while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit | |
1309 | && --chain_length != 0); | |
1310 | ||
1311 | if (best_len <= lookahead) return best_len; | |
1312 | return lookahead; | |
1313 | } | |
1314 | ||
1315 | int deflateInit(ZStream strm, int level, int bits){ | |
1316 | return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL, | |
1317 | Z_DEFAULT_STRATEGY); | |
1318 | } | |
1319 | int deflateInit(ZStream strm, int level){ | |
1320 | return deflateInit(strm, level, MAX_WBITS); | |
1321 | } | |
1322 | int deflateInit2(ZStream strm, int level, int method, int windowBits, | |
1323 | int memLevel, int strategy){ | |
1324 | int noheader = 0; | |
1325 | // byte[] my_version=ZLIB_VERSION; | |
1326 | ||
1327 | // | |
1328 | // if (version == null || version[0] != my_version[0] | |
1329 | // || stream_size != sizeof(z_stream)) { | |
1330 | // return Z_VERSION_ERROR; | |
1331 | // } | |
1332 | ||
1333 | strm.msg = null; | |
1334 | ||
1335 | if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
1336 | ||
1337 | if (windowBits < 0) { // undocumented feature: suppress zlib header | |
1338 | noheader = 1; | |
1339 | windowBits = -windowBits; | |
1340 | } | |
1341 | ||
1342 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || | |
1343 | method != Z_DEFLATED || | |
1344 | windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || | |
1345 | strategy < 0 || strategy > Z_HUFFMAN_ONLY) { | |
1346 | return Z_STREAM_ERROR; | |
1347 | } | |
1348 | ||
1349 | strm.dstate = (Deflate)this; | |
1350 | ||
1351 | this.noheader = noheader; | |
1352 | w_bits = windowBits; | |
1353 | w_size = 1 << w_bits; | |
1354 | w_mask = w_size - 1; | |
1355 | ||
1356 | hash_bits = memLevel + 7; | |
1357 | hash_size = 1 << hash_bits; | |
1358 | hash_mask = hash_size - 1; | |
1359 | hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH); | |
1360 | ||
1361 | window = new byte[w_size*2]; | |
1362 | prev = new short[w_size]; | |
1363 | head = new short[hash_size]; | |
1364 | ||
1365 | lit_bufsize = 1 << (memLevel + 6); // 16K elements by default | |
1366 | ||
1367 | // We overlay pending_buf and d_buf+l_buf. This works since the average | |
1368 | // output size for (length,distance) codes is <= 24 bits. | |
1369 | pending_buf = new byte[lit_bufsize*4]; | |
1370 | pending_buf_size = lit_bufsize*4; | |
1371 | ||
1372 | d_buf = lit_bufsize/2; | |
1373 | l_buf = (1+2)*lit_bufsize; | |
1374 | ||
1375 | this.level = level; | |
1376 | ||
1377 | //System.out.println("level="+level); | |
1378 | ||
1379 | this.strategy = strategy; | |
1380 | this.method = (byte)method; | |
1381 | ||
1382 | return deflateReset(strm); | |
1383 | } | |
1384 | ||
1385 | int deflateReset(ZStream strm){ | |
1386 | strm.total_in = strm.total_out = 0; | |
1387 | strm.msg = null; // | |
1388 | strm.data_type = Z_UNKNOWN; | |
1389 | ||
1390 | pending = 0; | |
1391 | pending_out = 0; | |
1392 | ||
1393 | if(noheader < 0) { | |
1394 | noheader = 0; // was set to -1 by deflate(..., Z_FINISH); | |
1395 | } | |
1396 | status = (noheader!=0) ? BUSY_STATE : INIT_STATE; | |
1397 | strm.adler=strm._adler.adler32(0, null, 0, 0); | |
1398 | ||
1399 | last_flush = Z_NO_FLUSH; | |
1400 | ||
1401 | tr_init(); | |
1402 | lm_init(); | |
1403 | return Z_OK; | |
1404 | } | |
1405 | ||
1406 | int deflateEnd(){ | |
1407 | if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){ | |
1408 | return Z_STREAM_ERROR; | |
1409 | } | |
1410 | // Deallocate in reverse order of allocations: | |
1411 | pending_buf=null; | |
1412 | head=null; | |
1413 | prev=null; | |
1414 | window=null; | |
1415 | // free | |
1416 | // dstate=null; | |
1417 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | |
1418 | } | |
1419 | ||
1420 | int deflateParams(ZStream strm, int _level, int _strategy){ | |
1421 | int err=Z_OK; | |
1422 | ||
1423 | if(_level == Z_DEFAULT_COMPRESSION){ | |
1424 | _level = 6; | |
1425 | } | |
1426 | if(_level < 0 || _level > 9 || | |
1427 | _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) { | |
1428 | return Z_STREAM_ERROR; | |
1429 | } | |
1430 | ||
1431 | if(config_table[level].func!=config_table[_level].func && | |
1432 | strm.total_in != 0) { | |
1433 | // Flush the last buffer: | |
1434 | err = strm.deflate(Z_PARTIAL_FLUSH); | |
1435 | } | |
1436 | ||
1437 | if(level != _level) { | |
1438 | level = _level; | |
1439 | max_lazy_match = config_table[level].max_lazy; | |
1440 | good_match = config_table[level].good_length; | |
1441 | nice_match = config_table[level].nice_length; | |
1442 | max_chain_length = config_table[level].max_chain; | |
1443 | } | |
1444 | strategy = _strategy; | |
1445 | return err; | |
1446 | } | |
1447 | ||
1448 | int deflateSetDictionary (ZStream strm, byte[] dictionary, int dictLength){ | |
1449 | int length = dictLength; | |
1450 | int index=0; | |
1451 | ||
1452 | if(dictionary == null || status != INIT_STATE) | |
1453 | return Z_STREAM_ERROR; | |
1454 | ||
1455 | strm.adler=strm._adler.adler32(strm.adler, dictionary, 0, dictLength); | |
1456 | ||
1457 | if(length < MIN_MATCH) return Z_OK; | |
1458 | if(length > w_size-MIN_LOOKAHEAD){ | |
1459 | length = w_size-MIN_LOOKAHEAD; | |
1460 | index=dictLength-length; // use the tail of the dictionary | |
1461 | } | |
1462 | System.arraycopy(dictionary, index, window, 0, length); | |
1463 | strstart = length; | |
1464 | block_start = length; | |
1465 | ||
1466 | // Insert all strings in the hash table (except for the last two bytes). | |
1467 | // s->lookahead stays null, so s->ins_h will be recomputed at the next | |
1468 | // call of fill_window. | |
1469 | ||
1470 | ins_h = window[0]&0xff; | |
1471 | ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask; | |
1472 | ||
1473 | for(int n=0; n<=length-MIN_MATCH; n++){ | |
1474 | ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1475 | prev[n&w_mask]=head[ins_h]; | |
1476 | head[ins_h]=(short)n; | |
1477 | } | |
1478 | return Z_OK; | |
1479 | } | |
1480 | ||
1481 | int deflate(ZStream strm, int flush){ | |
1482 | int old_flush; | |
1483 | ||
1484 | if(flush>Z_FINISH || flush<0){ | |
1485 | return Z_STREAM_ERROR; | |
1486 | } | |
1487 | ||
1488 | if(strm.next_out == null || | |
1489 | (strm.next_in == null && strm.avail_in != 0) || | |
1490 | (status == FINISH_STATE && flush != Z_FINISH)) { | |
1491 | strm.msg=z_errmsg[Z_NEED_DICT-(Z_STREAM_ERROR)]; | |
1492 | return Z_STREAM_ERROR; | |
1493 | } | |
1494 | if(strm.avail_out == 0){ | |
1495 | strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; | |
1496 | return Z_BUF_ERROR; | |
1497 | } | |
1498 | ||
1499 | this.strm = strm; // just in case | |
1500 | old_flush = last_flush; | |
1501 | last_flush = flush; | |
1502 | ||
1503 | // Write the zlib header | |
1504 | if(status == INIT_STATE) { | |
1505 | int header = (Z_DEFLATED+((w_bits-8)<<4))<<8; | |
1506 | int level_flags=((level-1)&0xff)>>1; | |
1507 | ||
1508 | if(level_flags>3) level_flags=3; | |
1509 | header |= (level_flags<<6); | |
1510 | if(strstart!=0) header |= PRESET_DICT; | |
1511 | header+=31-(header % 31); | |
1512 | ||
1513 | status=BUSY_STATE; | |
1514 | putShortMSB(header); | |
1515 | ||
1516 | ||
1517 | // Save the adler32 of the preset dictionary: | |
1518 | if(strstart!=0){ | |
1519 | putShortMSB((int)(strm.adler>>>16)); | |
1520 | putShortMSB((int)(strm.adler&0xffff)); | |
1521 | } | |
1522 | strm.adler=strm._adler.adler32(0, null, 0, 0); | |
1523 | } | |
1524 | ||
1525 | // Flush as much pending output as possible | |
1526 | if(pending != 0) { | |
1527 | strm.flush_pending(); | |
1528 | if(strm.avail_out == 0) { | |
1529 | //System.out.println(" avail_out==0"); | |
1530 | // Since avail_out is 0, deflate will be called again with | |
1531 | // more output space, but possibly with both pending and | |
1532 | // avail_in equal to zero. There won't be anything to do, | |
1533 | // but this is not an error situation so make sure we | |
1534 | // return OK instead of BUF_ERROR at next call of deflate: | |
1535 | last_flush = -1; | |
1536 | return Z_OK; | |
1537 | } | |
1538 | ||
1539 | // Make sure there is something to do and avoid duplicate consecutive | |
1540 | // flushes. For repeated and useless calls with Z_FINISH, we keep | |
1541 | // returning Z_STREAM_END instead of Z_BUFF_ERROR. | |
1542 | } | |
1543 | else if(strm.avail_in==0 && flush <= old_flush && | |
1544 | flush != Z_FINISH) { | |
1545 | strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; | |
1546 | return Z_BUF_ERROR; | |
1547 | } | |
1548 | ||
1549 | // User must not provide more input after the first FINISH: | |
1550 | if(status == FINISH_STATE && strm.avail_in != 0) { | |
1551 | strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; | |
1552 | return Z_BUF_ERROR; | |
1553 | } | |
1554 | ||
1555 | // Start a new block or continue the current one. | |
1556 | if(strm.avail_in!=0 || lookahead!=0 || | |
1557 | (flush != Z_NO_FLUSH && status != FINISH_STATE)) { | |
1558 | int bstate=-1; | |
1559 | switch(config_table[level].func){ | |
1560 | case STORED: | |
1561 | bstate = deflate_stored(flush); | |
1562 | break; | |
1563 | case FAST: | |
1564 | bstate = deflate_fast(flush); | |
1565 | break; | |
1566 | case SLOW: | |
1567 | bstate = deflate_slow(flush); | |
1568 | break; | |
1569 | default: | |
1570 | } | |
1571 | ||
1572 | if (bstate==FinishStarted || bstate==FinishDone) { | |
1573 | status = FINISH_STATE; | |
1574 | } | |
1575 | if (bstate==NeedMore || bstate==FinishStarted) { | |
1576 | if(strm.avail_out == 0) { | |
1577 | last_flush = -1; // avoid BUF_ERROR next call, see above | |
1578 | } | |
1579 | return Z_OK; | |
1580 | // If flush != Z_NO_FLUSH && avail_out == 0, the next call | |
1581 | // of deflate should use the same flush parameter to make sure | |
1582 | // that the flush is complete. So we don't have to output an | |
1583 | // empty block here, this will be done at next call. This also | |
1584 | // ensures that for a very small output buffer, we emit at most | |
1585 | // one empty block. | |
1586 | } | |
1587 | ||
1588 | if (bstate==BlockDone) { | |
1589 | if(flush == Z_PARTIAL_FLUSH) { | |
1590 | _tr_align(); | |
1591 | } | |
1592 | else { // FULL_FLUSH or SYNC_FLUSH | |
1593 | _tr_stored_block(0, 0, false); | |
1594 | // For a full flush, this empty block will be recognized | |
1595 | // as a special marker by inflate_sync(). | |
1596 | if(flush == Z_FULL_FLUSH) { | |
1597 | //state.head[s.hash_size-1]=0; | |
1598 | for(int i=0; i<hash_size/*-1*/; i++) // forget history | |
1599 | head[i]=0; | |
1600 | } | |
1601 | } | |
1602 | strm.flush_pending(); | |
1603 | if(strm.avail_out == 0) { | |
1604 | last_flush = -1; // avoid BUF_ERROR at next call, see above | |
1605 | return Z_OK; | |
1606 | } | |
1607 | } | |
1608 | } | |
1609 | ||
1610 | if(flush!=Z_FINISH) return Z_OK; | |
1611 | if(noheader!=0) return Z_STREAM_END; | |
1612 | ||
1613 | // Write the zlib trailer (adler32) | |
1614 | putShortMSB((int)(strm.adler>>>16)); | |
1615 | putShortMSB((int)(strm.adler&0xffff)); | |
1616 | strm.flush_pending(); | |
1617 | ||
1618 | // If avail_out is zero, the application will call deflate again | |
1619 | // to flush the rest. | |
1620 | noheader = -1; // write the trailer only once! | |
1621 | return pending != 0 ? Z_OK : Z_STREAM_END; | |
1622 | } | |
1623 | } |