`timescale 1ns / 1ps
-module ROM(
+module SimROM(
input [15:0] address,
inout [7:0] data,
input clk,
input wr, rd);
- reg [7:0] rom [2047:0];
+ reg rdlatch = 0;
+ reg [7:0] odata;
+
+ reg [7:0] rom [32767:0];
initial $readmemh("rom.hex", rom);
wire decode = address[15:13] == 0;
- wire [7:0] odata = rom[address[11:0]];
- assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
- //assign data = rd ? odata : 8'bzzzzzzzz;
+ always @(posedge clk) begin
+ rdlatch <= rd && decode;
+ odata <= rom[address[10:0]];
+ end
+ assign data = rdlatch ? odata : 8'bzzzzzzzz;
+endmodule
+
+module BootstrapROM(
+ input [15:0] address,
+ inout [7:0] data,
+ input clk,
+ input wr, rd);
+
+ reg rdlatch = 0;
+ reg [7:0] addrlatch = 0;
+ reg romno = 0, romnotmp = 0;
+ reg [7:0] brom0 [255:0];
+ reg [7:0] brom1 [255:0];
+
+ initial $readmemh("fpgaboot.hex", brom0);
+ initial $readmemh("gbboot.hex", brom1);
+
+`ifdef isim
+ initial romno <= 1;
+`endif
+
+ wire decode = address[15:8] == 0;
+ wire [7:0] odata = (romno == 0) ? brom0[addrlatch] : brom1[addrlatch];
+ always @(posedge clk) begin
+ rdlatch <= rd && decode;
+ addrlatch <= address[7:0];
+ if (wr && decode) romnotmp <= data[0];
+ if (rd && address == 16'h0000) romno <= romnotmp; /* Latch when the program restarts. */
+ end
+ assign data = rdlatch ? odata : 8'bzzzzzzzz;
+endmodule
+
+module MiniRAM(
+ input [15:0] address,
+ inout [7:0] data,
+ input clk,
+ input wr, rd);
+
+ reg [7:0] ram [127:0];
+
+ wire decode = (address >= 16'hFF80) && (address <= 16'hFFFE);
+ reg rdlatch = 0;
+ reg [7:0] odata;
+ assign data = rdlatch ? odata : 8'bzzzzzzzz;
+
+ always @(posedge clk)
+ begin
+ rdlatch <= rd && decode;
+ if (decode) // This has to go this way. The only way XST knows how to do
+ begin // block ram is chip select, write enable, and always
+ if (wr) // reading. "else if rd" does not cut it ...
+ ram[address[6:0]] <= data;
+ odata <= ram[address[6:0]];
+ end
+ end
+endmodule
+
+module CellularRAM(
+ input clk,
+ input [15:0] address,
+ inout [7:0] data,
+ input wr, rd,
+ output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK,
+ output wire [22:0] cr_A,
+ inout [15:0] cr_DQ);
+
+ parameter ADDR_PROGADDRH = 16'hFF60;
+ parameter ADDR_PROGADDRM = 16'hFF61;
+ parameter ADDR_PROGADDRL = 16'hFF62;
+ parameter ADDR_PROGDATA = 16'hFF63;
+ parameter ADDR_MBC = 16'hFF64;
+
+ reg rdlatch = 0, wrlatch = 0;
+ reg [15:0] addrlatch = 0;
+ reg [7:0] datalatch = 0;
+
+ reg [7:0] progaddrh, progaddrm, progaddrl;
+
+ reg [22:0] progaddr;
+
+ reg [7:0] mbc_emul = 8'b00000101; // High bit is whether we're poking flash
+ // low 7 bits are the MBC that we are emulating
+
+ assign cr_nADV = 0; /* Addresses are always valid! :D */
+ assign cr_nCE = 0; /* The chip is enabled */
+ assign cr_nLB = 0; /* Lower byte is enabled */
+ assign cr_nUB = 0; /* Upper byte is enabled */
+ assign cr_CRE = 0; /* Data writes, not config */
+ assign cr_CLK = 0; /* Clock? I think not! */
+
+ wire decode = (addrlatch[15:14] == 2'b00) /* extrom */ || (addrlatch[15:13] == 3'b101) /* extram */ || (addrlatch == ADDR_PROGDATA);
+
+ reg [3:0] rambank = 0;
+ reg [8:0] rombank = 1;
+
+ assign cr_nOE = decode ? ~rdlatch : 1;
+ assign cr_nWE = (decode && ((addrlatch == ADDR_PROGDATA) || (mbc_emul[6:0] == 0) || (addrlatch[15:13] == 3'b101))) ? ~wrlatch : 1;
+
+ assign cr_DQ = (~cr_nOE) ? 16'bzzzzzzzzzzzzzzzz : {8'b0, datalatch};
+ assign cr_A = (addrlatch[15:14] == 2'b00) ? /* extrom, home bank */ {9'b0,addrlatch[13:0]} :
+ (addrlatch[15:14] == 2'b01) ? /* extrom, paged bank */ {rombank, addrlatch[13:0]} :
+ (addrlatch[15:13] == 3'b101) ? /* extram */ {1'b1, 5'b0, rambank, addrlatch[12:0]} :
+ (addrlatch == ADDR_PROGDATA) ? progaddr :
+ 23'b0;
+
+ always @(posedge clk) begin
+ case (address)
+ ADDR_PROGADDRH: if (wr) progaddrh <= data;
+ ADDR_PROGADDRM: if (wr) progaddrm <= data;
+ ADDR_PROGADDRL: if (wr) progaddrl <= data;
+ ADDR_PROGDATA: if (rd || wr) begin
+ progaddr <= {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]};
+ {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]} <= {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]} + 23'b1;
+ end
+ ADDR_MBC: begin
+ mbc_emul <= data;
+ rambank <= 0;
+ rombank <= 1;
+ end
+ endcase
+
+ if (mbc_emul[6:0] == 5) begin
+ if ((address[15:12] == 4'h2) && wr)
+ rombank <= {rombank[8], data};
+ else if ((address[15:12] == 4'h3) && wr)
+ rombank <= {data[0], rombank[7:0]};
+ else if ((address[15:12] == 4'h4) && wr)
+ rambank <= data[3:0];
+ end
+
+ rdlatch <= rd;
+ wrlatch <= wr;
+ addrlatch <= address;
+ datalatch <= data;
+ end
+
+ assign data = (rdlatch && decode) ?
+ (addrlatch == ADDR_PROGADDRH) ? progaddrh :
+ (addrlatch == ADDR_PROGADDRM) ? progaddrm :
+ (addrlatch == ADDR_PROGADDRL) ? progaddrl :
+ cr_DQ
+ : 8'bzzzzzzzz;
endmodule
module InternalRAM(
input clk,
input wr, rd);
- // synthesis attribute ram_style of reg is block
+ // synthesis attribute ram_style of ram is block
reg [7:0] ram [8191:0];
- wire decode = address[15:13] == 3'b110;
+ wire decode = (address >= 16'hC000) && (address <= 16'hFDFF); /* This includes echo RAM. */
reg [7:0] odata;
- assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
+ reg rdlatch = 0;
+ assign data = rdlatch ? odata : 8'bzzzzzzzz;
- always @(negedge clk)
+ always @(posedge clk)
begin
- if (decode) // This has to go this way. The only way XST knows how to do
- begin // block ram is chip select, write enable, and always
+ rdlatch <= rd && decode;
+ if (decode) // This has to go this way. The only way XST knows how to do
+ begin // block ram is chip select, write enable, and always
if (wr) // reading. "else if rd" does not cut it ...
ram[address[12:0]] <= data;
odata <= ram[address[12:0]];
wire decode = address == 16'hFF51;
reg [7:0] odata;
- assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
+ reg rdlatch = 0;
+ assign data = rdlatch ? odata : 8'bzzzzzzzz;
- always @(negedge clk)
+ always @(posedge clk)
begin
+ rdlatch <= rd && decode;
if (decode && rd)
odata <= switches;
else if (decode && wr)
end
endmodule
+`ifdef isim
+module Dumpable(input [2:0] r, g, input [1:0] b, input hs, vs, vgaclk);
+endmodule
+`endif
+
module CoreTop(
+`ifdef isim
+ output reg vgaclk = 0,
+ output reg clk = 0,
+`else
input xtal,
input [7:0] switches,
input [3:0] buttons,
output wire [7:0] leds,
output serio,
+ input serin,
output wire [3:0] digits,
- output wire [7:0] seven);
+ output wire [7:0] seven,
+ output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK,
+ output wire [22:0] cr_A,
+ inout [15:0] cr_DQ,
+ input ps2c, ps2d,
+`endif
+ output wire hs, vs,
+ output wire [2:0] r, g,
+ output wire [1:0] b,
+ output wire soundl, soundr);
+
+`ifdef isim
+ always #62 clk <= ~clk;
+ always #100 vgaclk <= ~vgaclk;
+
+ Dumpable dump(r,g,b,hs,vs,vgaclk);
- wire clk;
- CPUDCM dcm (.CLKIN_IN(xtal), .CLKFX_OUT(clk));
+ wire [7:0] leds;
+ wire serio;
+ wire serin = 1;
+ wire [3:0] digits;
+ wire [7:0] seven;
+ wire [7:0] switches = 8'b0;
+ wire [3:0] buttons = 4'b0;
+`else
+ wire xtalb, clk, vgaclk;
+ IBUFG iclkbuf(.O(xtalb), .I(xtal));
+ CPUDCM dcm (.CLKIN_IN(xtalb), .CLKFX_OUT(clk));
+ pixDCM pixdcm (.CLKIN_IN(xtalb), .CLKFX_OUT(vgaclk));
+ wire [7:0] ps2buttons;
+`endif
- wire [15:0] addr;
- wire [7:0] data;
- wire wr, rd;
+ wire [15:0] addr [1:0];
+ wire [7:0] data [1:0];
+ wire wr [1:0], rd [1:0];
- wire irq, tmrirq;
+ wire irq, tmrirq, lcdcirq, vblankirq, btnirq;
wire [7:0] jaddr;
-
+ wire [1:0] state;
+ wire ack;
+
GBZ80Core core(
.clk(clk),
- .busaddress(addr),
- .busdata(data),
- .buswr(wr),
- .busrd(rd),
+ .bus0address(addr[0]),
+ .bus0data(data[0]),
+ .bus0wr(wr[0]),
+ .bus0rd(rd[0]),
+ .bus1address(addr[1]),
+ .bus1data(data[1]),
+ .bus1wr(wr[1]),
+ .bus1rd(rd[1]),
.irq(irq),
- .jaddr(jaddr));
+ .irqack(ack),
+ .jaddr(jaddr),
+ .state(state));
- ROM rom(
- .address(addr),
- .data(data),
+ BootstrapROM brom(
+ .address(addr[1]),
+ .data(data[1]),
.clk(clk),
- .wr(wr),
- .rd(rd));
+ .wr(wr[1]),
+ .rd(rd[1]));
- AddrMon amon(
- .addr(addr),
- .clk(clk),
- .digit(digits),
- .out(seven),
- .freeze(buttons[0]));
-
+`ifdef isim
+ SimROM rom(
+ .address(addr[0]),
+ .data(data[0]),
+ .clk(clk),
+ .wr(wr[0]),
+ .rd(rd[0]));
+`else
+ CellularRAM cellram(
+ .address(addr[0]),
+ .data(data[0]),
+ .clk(clk),
+ .wr(wr[0]),
+ .rd(rd[0]),
+ .cr_nADV(cr_nADV),
+ .cr_nCE(cr_nCE),
+ .cr_nOE(cr_nOE),
+ .cr_nWE(cr_nWE),
+ .cr_CRE(cr_CRE),
+ .cr_nLB(cr_nLB),
+ .cr_nUB(cr_nUB),
+ .cr_CLK(cr_CLK),
+ .cr_A(cr_A),
+ .cr_DQ(cr_DQ));
+`endif
+
+ wire lcdhs, lcdvs, lcdclk;
+ wire [2:0] lcdr, lcdg;
+ wire [1:0] lcdb;
+
+ LCDC lcdc(
+ .clk(clk),
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
+ .lcdcirq(lcdcirq),
+ .vblankirq(vblankirq),
+ .lcdclk(lcdclk),
+ .lcdhs(lcdhs),
+ .lcdvs(lcdvs),
+ .lcdr(lcdr),
+ .lcdg(lcdg),
+ .lcdb(lcdb));
+
+ Framebuffer fb(
+ .lcdclk(lcdclk),
+ .lcdhs(lcdhs),
+ .lcdvs(lcdvs),
+ .lcdr(lcdr),
+ .lcdg(lcdg),
+ .lcdb(lcdb),
+ .vgaclk(vgaclk),
+ .vgahs(hs),
+ .vgavs(vs),
+ .vgar(r),
+ .vgag(g),
+ .vgab(b));
+
+ wire [7:0] sleds;
+`ifdef isim
+ assign leds = sleds;
+`else
+ assign leds = sleds | ps2buttons;
+`endif
Switches sw(
- .address(addr),
- .data(data),
.clk(clk),
- .wr(wr),
- .rd(rd),
- .ledout(leds),
+ .address(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
+ .ledout(sleds),
.switches(switches)
);
-
- UART nouart ( /* no u */
- .clk(clk),
- .wr(wr),
- .rd(rd),
- .addr(addr),
- .data(data),
- .serial(serio)
- );
-
- InternalRAM ram(
- .address(addr),
- .data(data),
+
+`ifdef isim
+`else
+ PS2Button ps2(
.clk(clk),
- .wr(wr),
- .rd(rd)
+ .inclk(ps2c),
+ .indata(ps2d),
+ .buttons(ps2buttons)
+ );
+`endif
+
+ Buttons ass(
+ .core_clk(clk),
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
+ .int(btnirq),
+ `ifdef isim
+ .buttons(switches)
+ `else
+ .buttons(ps2buttons)
+ `endif
);
- Timer tmr(
+ AddrMon amon(
+ .clk(clk),
+ .addr(addr[0]),
+ .digit(digits),
+ .out(seven),
+ .freeze(buttons[0]),
+ .periods(
+ (state == 2'b00) ? 4'b0010 :
+ (state == 2'b01) ? 4'b0001 :
+ (state == 2'b10) ? 4'b1000 :
+ 4'b0100) );
+
+ UART nouart ( /* no u */
.clk(clk),
- .wr(wr),
- .rd(rd),
- .addr(addr),
- .data(data),
- .irq(tmrirq)
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
+ .serial(serio),
+ .serialrx(serin)
);
-
- Interrupt intr(
- .clk(clk),
- .rd(rd),
- .wr(wr),
- .addr(addr),
- .data(data),
- .vblank(0),
- .lcdc(0),
- .tovf(tmrirq),
- .serial(0),
- .buttons(0),
- .master(irq),
- .jaddr(jaddr));
-endmodule
-module TestBench();
- reg clk = 1;
- wire [15:0] addr;
- wire [7:0] data;
- wire wr, rd;
-
- wire irq, tmrirq;
- wire [7:0] jaddr;
-
- wire [7:0] leds;
- wire [7:0] switches;
-
- always #10 clk <= ~clk;
- GBZ80Core core(
- .clk(clk),
- .busaddress(addr),
- .busdata(data),
- .buswr(wr),
- .busrd(rd),
- .irq(irq),
- .jaddr(jaddr));
-
- ROM rom(
+ InternalRAM ram(
.clk(clk),
- .address(addr),
- .data(data),
- .wr(wr),
- .rd(rd));
+ .address(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0])
+ );
- InternalRAM ram(
- .address(addr),
- .data(data),
+ MiniRAM mram(
.clk(clk),
- .wr(wr),
- .rd(rd));
+ .address(addr[1]),
+ .data(data[1]),
+ .wr(wr[1]),
+ .rd(rd[1])
+ );
- wire serio;
- UART uart(
- .addr(addr),
- .data(data),
- .clk(clk),
- .wr(wr),
- .rd(rd),
- .serial(serio));
-
Timer tmr(
.clk(clk),
- .wr(wr),
- .rd(rd),
- .addr(addr),
- .data(data),
- .irq(tmrirq));
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
+ .irq(tmrirq)
+ );
Interrupt intr(
.clk(clk),
- .rd(rd),
- .wr(wr),
- .addr(addr),
- .data(data),
- .vblank(0),
- .lcdc(0),
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
+ .vblank(vblankirq),
+ .lcdc(lcdcirq),
.tovf(tmrirq),
- .serial(0),
- .buttons(0),
+ .serial(1'b0),
+ .buttons(btnirq),
.master(irq),
+ .ack(ack),
.jaddr(jaddr));
- Switches sw(
- .clk(clk),
- .address(addr),
- .data(data),
- .wr(wr),
- .rd(rd),
- .switches(switches),
- .ledout(leds));
+ Soundcore sound(
+ .core_clk(clk),
+ .addr(addr[0]),
+ .data(data[0]),
+ .rd(rd[0]),
+ .wr(wr[0]),
+ .snd_data_l(soundl),
+ .snd_data_r(soundr));
endmodule