`define INSN_RST 8'b11xxx111
`define INSN_RET 8'b110x1001 // 1 = RETI, 0 = RET
`define INSN_CALL 8'b11001101
+`define INSN_JP_imm 8'b11000011
+`define INSN_JPCC_imm 8'b110xx010
+`define INSN_ALU_A 8'b00xxx111
+
+`define INSN_cc_NZ 2'b00
+`define INSN_cc_Z 2'b01
+`define INSN_cc_NC 2'b10
+`define INSN_cc_C 2'b11
`define INSN_reg_A 3'b111
`define INSN_reg_B 3'b000
`define INSN_alu_XOR 3'b101
`define INSN_alu_OR 3'b110
`define INSN_alu_CP 3'b111 // Oh lawd, is dat some CP?
+`define INSN_alu_RLCA 3'b000
+`define INSN_alu_RRCA 3'b001
+`define INSN_alu_RLA 3'b010
+`define INSN_alu_RRA 3'b011
+`define INSN_alu_DAA 3'b100
+`define INSN_alu_CPL 3'b101
+`define INSN_alu_SCF 3'b110
+`define INSN_alu_CCF 3'b111
module GBZ80Core(
input clk,
endcase
end
end
+ `INSN_ALU_A: begin
+ `EXEC_NEWCYCLE;
+ `EXEC_INC_PC;
+ end
`INSN_NOP: begin
`EXEC_NEWCYCLE;
`EXEC_INC_PC;
end
endcase
end
+ `INSN_JP_imm,`INSN_JPCC_imm: begin
+ case (cycle)
+ 0: begin
+ `EXEC_INC_PC;
+ `EXEC_NEXTADDR_PCINC;
+ rd <= 1;
+ end
+ 1: begin
+ `EXEC_INC_PC;
+ `EXEC_NEXTADDR_PCINC;
+ rd <= 1;
+ end
+ 2: begin
+ `EXEC_INC_PC;
+ if (!opcode[0]) begin // i.e., JP cc,nn
+ /* We need to check the condition code to bail out. */
+ case (opcode[4:3])
+ `INSN_cc_NZ: if (registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
+ `INSN_cc_Z: if (~registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
+ `INSN_cc_NC: if (registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
+ `INSN_cc_C: if (~registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
+ endcase
+ end
+ end
+ 3: begin
+ `EXEC_NEWCYCLE;
+ end
+ endcase
+ end
default:
$stop;
endcase
registers[`REG_F][3:0]
};
end
+ `INSN_alu_SUB: begin
+ registers[`REG_A] <=
+ registers[`REG_A] - tmp;
+ registers[`REG_F] <=
+ { /* Z */ ((registers[`REG_A] - tmp) == 0) ? 1'b1 : 1'b0,
+ /* N */ 1'b1,
+ /* H */ (({1'b0,registers[`REG_A][3:0]} - {1'b0,tmp[3:0]}) >> 4 == 1) ? 1'b1 : 1'b0,
+ /* C */ (({1'b0,registers[`REG_A]} - {1'b0,tmp}) >> 8 == 1) ? 1'b1 : 1'b0,
+ registers[`REG_F][3:0]
+ };
+ end
+ `INSN_alu_SBC: begin
+ registers[`REG_A] <=
+ registers[`REG_A] - (tmp + {7'b0,registers[`REG_F][4]});
+ registers[`REG_F] <=
+ { /* Z */ ((registers[`REG_A] - (tmp + {7'b0,registers[`REG_F][4]})) == 0) ? 1'b1 : 1'b0,
+ /* N */ 1'b1,
+ /* H */ (({1'b0,registers[`REG_A][3:0]} - ({1'b0,tmp[3:0]} + {4'b0,registers[`REG_F][4]})) >> 4 == 1) ? 1'b1 : 1'b0,
+ /* C */ (({1'b0,registers[`REG_A]} - ({1'b0,tmp} + {8'b0,registers[`REG_F][4]})) >> 8 == 1) ? 1'b1 : 1'b0,
+ registers[`REG_F][3:0]
+ };
+ end
`INSN_alu_AND: begin
registers[`REG_A] <=
registers[`REG_A] & tmp;
registers[`REG_F][3:0]
};
end
+ `INSN_alu_CP: begin
+ registers[`REG_F] <=
+ { /* Z */ ((registers[`REG_A] - tmp) == 0) ? 1'b1 : 1'b0,
+ /* N */ 1'b1,
+ /* H */ (({1'b0,registers[`REG_A][3:0]} - {1'b0,tmp[3:0]}) >> 4 == 1) ? 1'b1 : 1'b0,
+ /* C */ (({1'b0,registers[`REG_A]} - {1'b0,tmp}) >> 8 == 1) ? 1'b1 : 1'b0,
+ registers[`REG_F][3:0]
+ };
+ end
default:
$stop;
endcase
end
end
+ `INSN_ALU_A: begin
+ case(opcode[5:3])
+ `INSN_alu_RLCA: begin
+ registers[`REG_A] <= {registers[`REG_A][6:0],registers[`REG_A][7]};
+ registers[`REG_F] <= {registers[`REG_F][7:5],registers[`REG_A][7],registers[`REG_F][3:0]};
+ end
+ `INSN_alu_RRCA: begin
+ registers[`REG_A] <= {registers[`REG_A][0],registers[`REG_A][7:1]};
+ registers[`REG_F] <= {registers[`REG_F][7:5],registers[`REG_A][0],registers[`REG_F][3:0]};
+ end
+ `INSN_alu_RLA: begin
+ registers[`REG_A] <= {registers[`REG_A][6:0],registers[`REG_F][4]};
+ registers[`REG_F] <= {registers[`REG_F][7:5],registers[`REG_A][7],registers[`REG_F][3:0]};
+ end
+ `INSN_alu_RRA: begin
+ registers[`REG_A] <= {registers[`REG_A][4],registers[`REG_A][7:1]};
+ registers[`REG_F] <= {registers[`REG_F][7:5],registers[`REG_A][0],registers[`REG_F][3:0]};
+ end
+ `INSN_alu_CPL: begin
+ registers[`REG_A] <= ~registers[`REG_A];
+ registers[`REG_F] <= {registers[`REG_F][7],1'b1,1'b1,registers[`REG_F][4:0]};
+ end
+ `INSN_alu_SCF: begin
+ registers[`REG_F] <= {registers[`REG_F][7:5],1,registers[`REG_F][3:0]};
+ end
+ `INSN_alu_CCF: begin
+ registers[`REG_F] <= {registers[`REG_F][7:5],~registers[`REG_F][4],registers[`REG_F][3:0]};
+ end
+ endcase
+ end
`INSN_NOP: begin /* NOP! */ end
`INSN_RST: begin
case (cycle)
end
endcase
end
+ `INSN_JP_imm,`INSN_JPCC_imm: begin
+ case (cycle)
+ 0: begin /* type F */ end
+ 1: tmp <= rdata; // tmp contains newpcl
+ 2: tmp2 <= rdata; // tmp2 contains newpch
+ 3: {registers[`REG_PCH],registers[`REG_PCL]} <=
+ {tmp2,tmp};
+ endcase
+ end
default:
$stop;
endcase
end
endcase
endmodule
-
-`timescale 1ns / 1ps
-module ROM(
- input [15:0] address,
- inout [7:0] data,
- input clk,
- input wr, rd);
-
- reg [7:0] rom [2047:0];
- initial $readmemh("rom.hex", rom);
-
- wire decode = address[15:13] == 0;
- wire [7:0] odata = rom[address[11:0]];
- assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
- //assign data = rd ? odata : 8'bzzzzzzzz;
-endmodule
-
-module InternalRAM(
- input [15:0] address,
- inout [7:0] data,
- input clk,
- input wr, rd);
-
- reg [7:0] ram [8191:0];
-
- wire decode = (address >= 16'hC000) && (address < 16'hFE00);
- reg [7:0] odata;
- wire idata = data;
- assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
-
- always @(negedge clk)
- begin
- if (decode && rd)
- odata <= ram[address[12:0]];
- else if (decode && wr)
- ram[address[12:0]] <= data;
- end
-endmodule
-
-module Switches(
- input [15:0] address,
- inout [7:0] data,
- input clk,
- input wr, rd,
- input [7:0] switches,
- output reg [7:0] ledout);
-
- wire decode = address == 16'hFF51;
- reg [7:0] odata;
- wire idata = data;
- assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
-
- always @(negedge clk)
- begin
- if (decode && rd)
- odata <= switches;
- else if (decode && wr)
- ledout <= data;
- end
-endmodule
-
-module CoreTop(
- input xtal,
- input [1:0] switches,
- output wire [7:0] leds,
- output serio,
- output wire [3:0] digits,
- output wire [7:0] seven);
-
- wire clk;
- //IBUFG ibuf (.O(clk), .I(iclk));
-
- CPUDCM dcm (.CLKIN_IN(xtal), .CLKFX_OUT(clk));
-
- wire [15:0] addr;
- wire [7:0] data;
- wire wr, rd;
-
- wire [7:0] ledout;
- assign leds = switches[1] ? (switches[0]?{rd,wr,addr[5:0]}:data[7:0])
- : ledout;
-
- GBZ80Core core(
- .clk(clk),
- .busaddress(addr),
- .busdata(data),
- .buswr(wr),
- .busrd(rd));
-
- ROM rom(
- .address(addr),
- .data(data),
- .clk(clk),
- .wr(wr),
- .rd(rd));
-
- AddrMon amon(
- .addr(addr),
- .clk(clk),
- .digit(digits),
- .out(seven)
- );
-
- Switches sw(
- .address(addr),
- .data(data),
- .clk(clk),
- .wr(wr),
- .rd(rd),
- .ledout(ledout),
- .switches(0)
- );
-
- UART nouart (
- .clk(clk),
- .wr(wr),
- .rd(rd),
- .addr(addr),
- .data(data),
- .serial(serio)
- );
-endmodule
-
-module TestBench();
- reg clk = 0;
- wire [15:0] addr;
- wire [7:0] data;
- wire wr, rd;
-
-// wire [7:0] leds;
-// wire [7:0] switches;
-
- always #10 clk <= ~clk;
- GBZ80Core core(
- .clk(clk),
- .busaddress(addr),
- .busdata(data),
- .buswr(wr),
- .busrd(rd));
-
- ROM rom(
- .clk(clk),
- .address(addr),
- .data(data),
- .wr(wr),
- .rd(rd));
-
-// InternalRAM ram(
-// .address(addr),
-// .data(data),
-// .clk(clk),
-// .wr(wr),
-// .rd(rd));
-
-// wire serio;
-// UART uart(
-// .addr(addr),
-// .data(data),
-// .clk(clk),
-// .wr(wr),
-// .rd(rd),
-// .serial(serio));
-
-// Switches sw(
-// .clk(clk),
-// .address(addr),
-// .data(data),
-// .wr(wr),
-// .rd(rd),
-// .switches(switches),
-// .leds(leds));
-endmodule