-`define REG_A 0
-`define REG_B 1
-`define REG_C 2
-`define REG_D 3
-`define REG_E 4
-`define REG_F 5
-`define REG_H 6
-`define REG_L 7
-`define REG_SPH 8
-`define REG_SPL 9
-`define REG_PCH 10
-`define REG_PCL 11
+`define REG_A 0
+`define REG_B 1
+`define REG_C 2
+`define REG_D 3
+`define REG_E 4
+`define REG_F 5
+`define REG_H 6
+`define REG_L 7
+`define REG_SPH 8
+`define REG_SPL 9
+`define REG_PCH 10
+`define REG_PCL 11
-`define FLAG_Z 8'b10000000
-`define FLAG_N 8'b01000000
-`define FLAG_H 8'b00100000
-`define FLAG_C 8'b00010000
+`define _A registers[`REG_A]
+`define _B registers[`REG_B]
+`define _C registers[`REG_C]
+`define _D registers[`REG_D]
+`define _E registers[`REG_E]
+`define _F registers[`REG_F]
+`define _H registers[`REG_H]
+`define _L registers[`REG_L]
+`define _SPH registers[`REG_SPH]
+`define _SPL registers[`REG_SPL]
+`define _PCH registers[`REG_PCH]
+`define _PCL registers[`REG_PCL]
+`define _AF {`_A, `_F}
+`define _BC {`_B, `_C}
+`define _DE {`_D, `_E}
+`define _HL {`_H, `_L}
+`define _SP {`_SPH, `_SPL}
+`define _PC {`_PCH, `_PCL}
-`define STATE_FETCH 2'h0
-`define STATE_DECODE 2'h1
+`define FLAG_Z 8'b10000000
+`define FLAG_N 8'b01000000
+`define FLAG_H 8'b00100000
+`define FLAG_C 8'b00010000
+
+`define STATE_FETCH 2'h0
+`define STATE_DECODE 2'h1
`define STATE_EXECUTE 2'h2
`define STATE_WRITEBACK 2'h3
-`define INSN_LD_reg_imm8 8'b00xxx110
-`define INSN_HALT 8'b01110110
-`define INSN_LD_HL_reg 8'b01110xxx
-`define INSN_LD_reg_HL 8'b01xxx110
-`define INSN_LD_reg_reg 8'b01xxxxxx
-`define INSN_LD_reg_imm16 8'b00xx0001
-`define INSN_LD_SP_HL 8'b11111001
-`define INSN_PUSH_reg 8'b11xx0101
-`define INSN_POP_reg 8'b11xx0001
-`define INSN_LDH_AC 8'b111x0010 // Either LDH A,(C) or LDH (C),A
-`define INSN_LDx_AHL 8'b001xx010 // LDD/LDI A,(HL) / (HL),A
-`define INSN_ALU8 8'b10xxxxxx // 10 xxx yyy
+`define INSN_LD_reg_imm8 9'b000xxx110
+`define INSN_HALT 9'b001110110
+`define INSN_LD_HL_reg 9'b001110xxx
+`define INSN_LD_reg_HL 9'b001xxx110
+`define INSN_LD_reg_reg 9'b001xxxxxx
+`define INSN_LD_reg_imm16 9'b000xx0001
+`define INSN_LD_SP_HL 9'b011111001
+`define INSN_PUSH_reg 9'b011xx0101
+`define INSN_POP_reg 9'b011xx0001
+`define INSN_LDH_AC 9'b0111x0010 // Either LDH A,(C) or LDH (C),A
+`define INSN_LDx_AHL 9'b0001xx010 // LDD/LDI A,(HL) / (HL),A
+`define INSN_ALU8 9'b010xxxxxx // 10 xxx yyy
+`define INSN_ALU8IMM 9'b011xxx110
+`define INSN_NOP 9'b000000000
+`define INSN_RST 9'b011xxx111
+`define INSN_RET 9'b0110x1001 // 1 = RETI, 0 = RET
+`define INSN_RETCC 9'b0110xx000
+`define INSN_CALL 9'b011001101
+`define INSN_CALLCC 9'b0110xx100 // Not that call/cc.
+`define INSN_JP_imm 9'b011000011
+`define INSN_JPCC_imm 9'b0110xx010
+`define INSN_ALU_A 9'b000xxx111
+`define INSN_JP_HL 9'b011101001
+`define INSN_JR_imm 9'b000011000
+`define INSN_JRCC_imm 9'b0001xx000
+`define INSN_INCDEC16 9'b000xxx011
+`define INSN_VOP_INTR 9'b011111100 // 0xFC is grabbed by the fetch if there is an interrupt pending.
+`define INSN_DI 9'b011110011
+`define INSN_EI 9'b011111011
+`define INSN_INCDEC_HL 9'b00011010x
+`define INSN_INCDEC_reg8 9'b000xxx10x
+`define INSN_LD8M_A 9'b0111x0000 // 1111 for ld A, x; 1110 for ld x, A; bit 1 specifies 16m8 or 8m8
+`define INSN_LD16M_A 9'b0111x1010 // 1111 for ld A, x; 1110 for ld x, A; bit 1 specifies 16m8 or 8m8
+`define INSN_LDBCDE_A 9'b0000xx010
+`define INSN_TWO_BYTE 9'b011001011 // prefix for two-byte opqodes
+`define INSN_ALU_EXT 9'b100xxxxxx
+`define INSN_BIT 9'b101xxxxxx
+`define INSN_RES 9'b110xxxxxx
+`define INSN_SET 9'b111xxxxxx
+
+`define INSN_cc_NZ 2'b00
+`define INSN_cc_Z 2'b01
+`define INSN_cc_NC 2'b10
+`define INSN_cc_C 2'b11
`define INSN_reg_A 3'b111
`define INSN_reg_B 3'b000
`define INSN_reg_E 3'b011
`define INSN_reg_H 3'b100
`define INSN_reg_L 3'b101
-`define INSN_reg_dHL 3'b110
-`define INSN_reg16_BC 2'b00
-`define INSN_reg16_DE 2'b01
-`define INSN_reg16_HL 2'b10
-`define INSN_reg16_SP 2'b11
-`define INSN_stack_AF 2'b11
-`define INSN_stack_BC 2'b00
-`define INSN_stack_DE 2'b01
-`define INSN_stack_HL 2'b10
+`define INSN_reg_dHL 3'b110
+`define INSN_reg16_BC 2'b00
+`define INSN_reg16_DE 2'b01
+`define INSN_reg16_HL 2'b10
+`define INSN_reg16_SP 2'b11
+`define INSN_stack_AF 2'b11
+`define INSN_stack_BC 2'b00
+`define INSN_stack_DE 2'b01
+`define INSN_stack_HL 2'b10
`define INSN_alu_ADD 3'b000
`define INSN_alu_ADC 3'b001
`define INSN_alu_SUB 3'b010
`define INSN_alu_XOR 3'b101
`define INSN_alu_OR 3'b110
`define INSN_alu_CP 3'b111 // Oh lawd, is dat some CP?
+`define INSN_alu_RLCA 3'b000
+`define INSN_alu_RRCA 3'b001
+`define INSN_alu_RLA 3'b010
+`define INSN_alu_RRA 3'b011
+`define INSN_alu_DAA 3'b100
+`define INSN_alu_CPL 3'b101
+`define INSN_alu_SCF 3'b110
+`define INSN_alu_CCF 3'b111
+`define INSN_alu_RLC 3'b000
+`define INSN_alu_RRC 3'b001
+`define INSN_alu_RL 3'b010
+`define INSN_alu_RR 3'b011
+`define INSN_alu_DA_SLA 3'b100
+`define INSN_alu_CPL_SRA 3'b101
+`define INSN_alu_SCF_SWAP 3'b110
+`define INSN_alu_CCF_SRL 3'b111
+
+`define EXEC_INC_PC `_PC <= `_PC + 1;
+`define EXEC_NEXTADDR_PCINC address <= `_PC + 1;
+`define EXEC_NEWCYCLE begin newcycle <= 1; rd <= 1; wr <= 0; end
+`define EXEC_NEWCYCLE_TWOBYTE begin newcycle <= 1; rd <= 1; wr <= 0; twobyte <= 1; end
+`ifdef verilator
+ `define EXEC_WRITE(ad, da) begin address <= (ad); wdata <= (da); wr <= 1; end
+ `define EXEC_READ(ad) begin address <= (ad); rd <= 1; end
+`else
+ `ifdef isim
+ `define EXEC_WRITE(ad, da) begin address <= (ad); wdata <= (da); wr <= 1; end
+ `define EXEC_READ(ad) begin address <= (ad); rd <= 1; end
+ `else
+/* Work around XST's retarded bugs :\ */
+ `define EXEC_WRITE(ad, da) begin address <= (ad); wdata <= (da); wr <= 1; end end
+ `define EXEC_READ(ad) begin address <= (ad); rd <= 1; end end
+ `endif
+`endif
module GBZ80Core(
input clk,
- output reg [15:0] busaddress, /* BUS_* is latched on STATE_FETCH. */
- inout [7:0] busdata,
- output reg buswr, output reg busrd);
-
- reg [1:0] state = 0; /* State within this bus cycle (see STATE_*). */
- reg [2:0] cycle = 0; /* Cycle for instructions. */
+ inout [15:0] bus0address, /* BUS_* is latched on STATE_FETCH. */
+ inout [7:0] bus0data,
+ inout bus0wr, bus0rd,
+ inout [15:0] bus1address, /* BUS_* is latched on STATE_FETCH. */
+ inout [7:0] bus1data,
+ inout bus1wr, bus1rd,
+ input irq, input [7:0] jaddr,
+ output reg [1:0] state);
+
+// reg [1:0] state; /* State within this bus cycle (see STATE_*). */
+ reg [2:0] cycle; /* Cycle for instructions. */
reg [7:0] registers[11:0];
reg [15:0] address; /* Address for the next bus operation. */
- reg [7:0] opcode; /* Opcode from the current machine cycle. */
-
+ reg [8:0] opcode; /* Opcode from the current machine cycle. */
+
reg [7:0] rdata, wdata; /* Read data from this bus cycle, or write data for the next. */
- reg rd = 1, wr = 0, newcycle = 1;
+ reg rd, wr, newcycle, twobyte;
- reg [7:0] tmp; /* Generic temporary reg. */
+ reg [7:0] tmp, tmp2; /* Generic temporary regs. */
reg [7:0] buswdata;
- assign busdata = buswr ? buswdata : 8'bzzzzzzzz;
+ wire [7:0] busdata;
+
+ reg [15:0] busaddress;
+ reg buswr, busrd;
+
+ reg bootstrap_enb;
+ wire bus = ((busaddress[15:8] == 8'h00) && bootstrap_enb) || ((busaddress[15:7] == 9'b111111111) && (busaddress != 16'hFFFF)) /* 0 or 1 depending on which bus */
+ `ifdef isim
+ || (busaddress === 16'hxxxx) /* To avoid simulator glomulation. */
+ `endif
+ ;
+
+ assign bus0address = (bus == 0) ? busaddress : 16'bzzzzzzzzzzzzzzz;
+ assign bus1address = (bus == 1) ? busaddress : 16'bzzzzzzzzzzzzzzz;
+ assign bus0data = ((bus == 0) && buswr) ? buswdata : 8'bzzzzzzzz;
+ assign bus1data = ((bus == 1) && buswr) ? buswdata : 8'bzzzzzzzz;
+ assign busdata = (bus == 0) ? bus0data : bus1data;
+ assign bus0rd = (bus == 0) ? busrd : 1'b0;
+ assign bus1rd = (bus == 1) ? busrd : 1'b0;
+ assign bus0wr = (bus == 0) ? buswr : 1'b0;
+ assign bus1wr = (bus == 1) ? buswr : 1'b0;
+
+ reg ie, iedelay;
+
+ wire [7:0] rlc,rrc,rl,rr,sla,sra,swap,srl;
+ wire [3:0] rlcf,rrcf,rlf,rrf,slaf,sraf,swapf,srlf;
+ wire [7:0] alu_res;
+ wire [3:0] f_res;
+
+ assign rlc = {tmp[6:0],tmp[7]};
+ assign rlcf = {(tmp == 0 ? 1'b1 : 1'b0)
+ ,2'b0,
+ tmp[7]};
+
+ assign rrc = {tmp[0],tmp[7:1]};
+ assign rrcf = {(tmp == 0 ? 1'b1 : 1'b0),
+ 2'b0,
+ tmp[0]};
+
+ assign rl = {tmp[6:0],`_F[4]};
+ assign rlf = {({tmp[6:0],`_F[4]} == 0 ? 1'b1 : 1'b0),
+ 2'b0,
+ tmp[7]};
+
+ assign rr = {`_F[4],tmp[7:1]};
+ assign rrf = {({tmp[4],tmp[7:1]} == 0 ? 1'b1 : 1'b0),
+ 2'b0,
+ tmp[0]};
+
+ assign sla = {tmp[6:0],1'b0};
+ assign slaf = {(tmp[6:0] == 0 ? 1'b1 : 1'b0),
+ 2'b0,
+ tmp[7]};
+
+ assign sra = {tmp[7],tmp[7:1]};
+// assign sraf = {(tmp[7:1] == 0 ? 1'b1 : 1'b0),2'b0,tmp[0]}; now in assign srlf =
+
+ assign swap = {tmp[3:0],tmp[7:4]};
+ assign swapf = {(tmp == 1'b0 ? 1'b1 : 1'b0),
+ 3'b0};
+
+ assign srl = {1'b0,tmp[7:1]};
+ assign srlf = {(tmp[7:1] == 0 ? 1'b1 : 1'b0),
+ 2'b0,
+ tmp[0]};
+ assign sraf = srlf;
+
+ /* Y U Q */
+ assign {alu_res,f_res} =
+ opcode[5] ? (
+ opcode[4] ? (
+ opcode[3] ? {srl,srlf} : {swap,swapf}
+ ) : (
+ opcode[3] ? {sra,sraf} : {sla,slaf}
+ )
+ ) : (
+ opcode[4] ? (
+ opcode[3] ? {rr,rrf} : {rl,rlf}
+ ) : (
+ opcode[3] ? {rrc,rrcf} : {rlc,rlcf}
+ )
+ );
+
initial begin
- registers[ 0] <= 0;
- registers[ 1] <= 0;
- registers[ 2] <= 0;
- registers[ 3] <= 0;
- registers[ 4] <= 0;
- registers[ 5] <= 0;
- registers[ 6] <= 0;
- registers[ 7] <= 0;
- registers[ 8] <= 0;
- registers[ 9] <= 0;
- registers[10] <= 0;
- registers[11] <= 0;
+ `_A <= 0;
+ `_B <= 0;
+ `_C <= 0;
+ `_D <= 0;
+ `_E <= 0;
+ `_F <= 0;
+ `_H <= 0;
+ `_L <= 0;
+ `_PCH <= 0;
+ `_PCL <= 0;
+ `_SPH <= 0;
+ `_SPL <= 0;
+ rd <= 1;
+ wr <= 0;
+ newcycle <= 1;
+ state <= 0;
+ cycle <= 0;
+ busrd <= 0;
+ buswr <= 0;
+ busaddress <= 0;
+ ie <= 0;
+ iedelay <= 0;
+ opcode <= 0;
+ state <= `STATE_WRITEBACK;
+ cycle <= 0;
+ twobyte <= 0;
+ bootstrap_enb <= 1;
end
- always @(posedge clk)
+ always @(negedge clk) /* Set things up at the negedge to prepare for the posedge. */
case (state)
`STATE_FETCH: begin
- if (wr)
- buswdata <= wdata;
- if (newcycle)
- busaddress <= {registers[`REG_PCH], registers[`REG_PCL]};
- else
+ if (newcycle) begin
+ busaddress <= `_PC;
+ buswr <= 0;
+ busrd <= 1;
+ end else begin
busaddress <= address;
- buswr <= wr;
- busrd <= rd;
+ buswr <= wr;
+ busrd <= rd;
+ if (wr)
+ buswdata <= wdata;
+ end
+ end
+ `STATE_DECODE: begin /* Make sure this only happens for one clock. */
+ buswr <= 0;
+ busrd <= 0;
+ end
+ endcase
+
+ always @(posedge clk)
+ case (state)
+ `STATE_FETCH: begin
+ /* Things are set up in negedge so that something looking on posedge will get his shit. */
state <= `STATE_DECODE;
end
`STATE_DECODE: begin
if (newcycle) begin
- opcode <= busdata;
- rdata <= busdata;
+ if (twobyte) begin
+ opcode <= {1'b1,busdata};
+ twobyte <= 0;
+ end else if (ie && irq)
+ opcode <= `INSN_VOP_INTR;
+ else
+ opcode <= {1'b0,busdata};
newcycle <= 0;
+ rdata <= busdata;
cycle <= 0;
- end else
- if (rd) rdata <= busdata;
- buswr <= 0;
- busrd <= 0;
+ end else begin
+ if (rd) rdata <= busdata; /* Still valid because peripherals are now expected to keep it held valid. */
+ cycle <= cycle + 1;
+ end
+ if (iedelay) begin
+ ie <= 1;
+ iedelay <= 0;
+ end
wr <= 0;
rd <= 0;
+ buswr <= 0;
+ busrd <= 0;
address <= 16'bxxxxxxxxxxxxxxxx; // Make it obvious if something of type has happened.
wdata <= 8'bxxxxxxxx;
state <= `STATE_EXECUTE;
end
`STATE_EXECUTE: begin
-`define EXEC_INC_PC \
- {registers[`REG_PCH], registers[`REG_PCL]} <= {registers[`REG_PCH], registers[`REG_PCL]} + 1
-`define EXEC_NEXTADDR_PCINC \
- address <= {registers[`REG_PCH], registers[`REG_PCL]} + 1
-`define EXEC_NEWCYCLE \
- newcycle <= 1; rd <= 1; wr <= 0
+ if (opcode[7:0] === 8'bxxxxxxxx)
+ $stop;
casex (opcode)
- `INSN_LD_reg_imm8: begin
- case (cycle)
- 0: begin
- `EXEC_INC_PC;
- `EXEC_NEXTADDR_PCINC;
- rd <= 1;
- end
- 1: begin
- `EXEC_INC_PC;
- if (opcode[5:3] == `INSN_reg_dHL) begin
- address <= {registers[`REG_H], registers[`REG_L]};
- wdata <= rdata;
- rd <= 0;
- wr <= 1;
- end else begin
- `EXEC_NEWCYCLE;
- end
- end
- 2: begin
- `EXEC_NEWCYCLE;
- end
- endcase
- end
- `INSN_HALT: begin
- `EXEC_NEWCYCLE;
- /* XXX Interrupts needed for HALT. */
- end
- `INSN_LD_HL_reg: begin
- case (cycle)
- 0: begin
- case (opcode[2:0])
- `INSN_reg_A: begin wdata <= registers[`REG_A]; end
- `INSN_reg_B: begin wdata <= registers[`REG_B]; end
- `INSN_reg_C: begin wdata <= registers[`REG_C]; end
- `INSN_reg_D: begin wdata <= registers[`REG_D]; end
- `INSN_reg_E: begin wdata <= registers[`REG_E]; end
- `INSN_reg_H: begin wdata <= registers[`REG_H]; end
- `INSN_reg_L: begin wdata <= registers[`REG_L]; end
- endcase
- address <= {registers[`REG_H], registers[`REG_L]};
- wr <= 1; rd <= 0;
- end
- 1: begin
- `EXEC_INC_PC;
- `EXEC_NEWCYCLE;
- end
- endcase
- end
- `INSN_LD_reg_HL: begin
- case(cycle)
- 0: begin
- address <= {registers[`REG_H], registers[`REG_L]};
- rd <= 1;
- end
- 1: begin
- tmp <= rdata;
- `EXEC_INC_PC;
- `EXEC_NEWCYCLE;
- end
- endcase
- end
- `INSN_LD_reg_reg: begin
- `EXEC_INC_PC;
- `EXEC_NEWCYCLE;
- case (opcode[2:0])
- `INSN_reg_A: begin tmp <= registers[`REG_A]; end
- `INSN_reg_B: begin tmp <= registers[`REG_B]; end
- `INSN_reg_C: begin tmp <= registers[`REG_C]; end
- `INSN_reg_D: begin tmp <= registers[`REG_D]; end
- `INSN_reg_E: begin tmp <= registers[`REG_E]; end
- `INSN_reg_H: begin tmp <= registers[`REG_H]; end
- `INSN_reg_L: begin tmp <= registers[`REG_L]; end
- endcase
- end
- `INSN_LD_reg_imm16: begin
- `EXEC_INC_PC;
- case (cycle)
- 0: begin
- `EXEC_NEXTADDR_PCINC;
- rd <= 1;
- end
- 1: begin
- `EXEC_NEXTADDR_PCINC;
- rd <= 1;
- end
- 2: begin `EXEC_NEWCYCLE; end
- endcase
- end
- `INSN_LD_SP_HL: begin
- case (cycle)
- 0: begin
- tmp <= registers[`REG_H];
- end
- 1: begin
- `EXEC_NEWCYCLE;
- `EXEC_INC_PC;
- tmp <= registers[`REG_L];
- end
- endcase
- end
- `INSN_PUSH_reg: begin /* PUSH is 16 cycles! */
- case (cycle)
- 0: begin
- wr <= 1;
- address <= {registers[`REG_SPH],registers[`REG_SPL]}-1;
- case (opcode[5:4])
- `INSN_stack_AF: wdata <= registers[`REG_A];
- `INSN_stack_BC: wdata <= registers[`REG_B];
- `INSN_stack_DE: wdata <= registers[`REG_D];
- `INSN_stack_HL: wdata <= registers[`REG_H];
- endcase
- end
- 1: begin
- wr <= 1;
- address <= {registers[`REG_SPH],registers[`REG_SPL]}-1;
- case (opcode[5:4])
- `INSN_stack_AF: wdata <= registers[`REG_F];
- `INSN_stack_BC: wdata <= registers[`REG_C];
- `INSN_stack_DE: wdata <= registers[`REG_E];
- `INSN_stack_HL: wdata <= registers[`REG_L];
- endcase
- end
- 2: begin /* TWIDDLE OUR FUCKING THUMBS! */ end
- 3: begin
- `EXEC_NEWCYCLE;
- `EXEC_INC_PC;
- end
- endcase
- end
- `INSN_POP_reg: begin /* POP is 12 cycles! */
- case (cycle)
- 0: begin
- rd <= 1;
- address <= {registers[`REG_SPH],registers[`REG_SPL]};
- end
- 1: begin
- rd <= 1;
- address <= {registers[`REG_SPH],registers[`REG_SPL]};
- end
- 2: begin
- `EXEC_NEWCYCLE;
- `EXEC_INC_PC;
- end
- endcase
- end
- `INSN_LDH_AC: begin
- case (cycle)
- 0: begin
- address <= {8'hFF,registers[`REG_C]};
- if (opcode[4]) begin // LD A,(C)
- rd <= 1;
- end else begin
- wr <= 1;
- wdata <= registers[`REG_A];
- end
- end
- 1: begin
- `EXEC_NEWCYCLE;
- `EXEC_INC_PC;
- end
- endcase
- end
- `INSN_LDx_AHL: begin
- case (cycle)
- 0: begin
- address <= {registers[`REG_H],registers[`REG_L]};
- if (opcode[3]) begin // LDx A, (HL)
- rd <= 1;
- end else begin
- wr <= 1;
- wdata <= registers[`REG_A];
- end
- end
- 1: begin
- `EXEC_NEWCYCLE;
- `EXEC_INC_PC;
- end
- endcase
- end
- `INSN_ALU8: begin
- if ((opcode[2:0] == `INSN_reg_dHL) && (cycle == 0)) begin
- // fffffffff fuck your shit, read from (HL) :(
- rd <= 1;
- address <= {registers[`REG_H], registers[`REG_L]};
- end else begin
- `EXEC_NEWCYCLE;
- `EXEC_INC_PC;
- case (opcode[2:0])
- `INSN_reg_A: begin tmp <= registers[`REG_A]; end
- `INSN_reg_B: begin tmp <= registers[`REG_B]; end
- `INSN_reg_C: begin tmp <= registers[`REG_C]; end
- `INSN_reg_D: begin tmp <= registers[`REG_D]; end
- `INSN_reg_E: begin tmp <= registers[`REG_E]; end
- `INSN_reg_H: begin tmp <= registers[`REG_H]; end
- `INSN_reg_L: begin tmp <= registers[`REG_L]; end
- `INSN_reg_dHL: begin tmp <= rdata; end
- endcase
- end
- end
+ `define EXECUTE
+ `include "allinsns.v"
+ `undef EXECUTE
default:
$stop;
endcase
end
`STATE_WRITEBACK: begin
casex (opcode)
- `INSN_LD_reg_imm8:
- case (cycle)
- 0: cycle <= 1;
- 1: case (opcode[5:3])
- `INSN_reg_A: begin registers[`REG_A] <= rdata; cycle <= 0; end
- `INSN_reg_B: begin registers[`REG_B] <= rdata; cycle <= 0; end
- `INSN_reg_C: begin registers[`REG_C] <= rdata; cycle <= 0; end
- `INSN_reg_D: begin registers[`REG_D] <= rdata; cycle <= 0; end
- `INSN_reg_E: begin registers[`REG_E] <= rdata; cycle <= 0; end
- `INSN_reg_H: begin registers[`REG_H] <= rdata; cycle <= 0; end
- `INSN_reg_L: begin registers[`REG_L] <= rdata; cycle <= 0; end
- `INSN_reg_dHL: cycle <= 2;
- endcase
- 2: cycle <= 0;
- endcase
- `INSN_HALT: begin
- /* Nothing needs happen here. */
- /* XXX Interrupts needed for HALT. */
- end
- `INSN_LD_HL_reg: begin
- case (cycle)
- 0: cycle <= 1;
- 1: cycle <= 0;
- endcase
- end
- `INSN_LD_reg_HL: begin
- case (cycle)
- 0: cycle <= 1;
- 1: begin
- case (opcode[5:3])
- `INSN_reg_A: begin registers[`REG_A] <= tmp; end
- `INSN_reg_B: begin registers[`REG_B] <= tmp; end
- `INSN_reg_C: begin registers[`REG_C] <= tmp; end
- `INSN_reg_D: begin registers[`REG_D] <= tmp; end
- `INSN_reg_E: begin registers[`REG_E] <= tmp; end
- `INSN_reg_H: begin registers[`REG_H] <= tmp; end
- `INSN_reg_L: begin registers[`REG_L] <= tmp; end
- endcase
- cycle <= 0;
- end
- endcase
- end
- `INSN_LD_reg_reg: begin
- case (opcode[5:3])
- `INSN_reg_A: begin registers[`REG_A] <= tmp; end
- `INSN_reg_B: begin registers[`REG_B] <= tmp; end
- `INSN_reg_C: begin registers[`REG_C] <= tmp; end
- `INSN_reg_D: begin registers[`REG_D] <= tmp; end
- `INSN_reg_E: begin registers[`REG_E] <= tmp; end
- `INSN_reg_H: begin registers[`REG_H] <= tmp; end
- `INSN_reg_L: begin registers[`REG_L] <= tmp; end
- endcase
- end
- `INSN_LD_reg_imm16: begin
- case (cycle)
- 0: cycle <= 1;
- 1: begin
- case (opcode[5:4])
- `INSN_reg16_BC: registers[`REG_C] <= rdata;
- `INSN_reg16_DE: registers[`REG_E] <= rdata;
- `INSN_reg16_HL: registers[`REG_L] <= rdata;
- `INSN_reg16_SP: registers[`REG_SPL] <= rdata;
- endcase
- cycle <= 2;
- end
- 2: begin
- case (opcode[5:4])
- `INSN_reg16_BC: registers[`REG_B] <= rdata;
- `INSN_reg16_DE: registers[`REG_D] <= rdata;
- `INSN_reg16_HL: registers[`REG_H] <= rdata;
- `INSN_reg16_SP: registers[`REG_SPH] <= rdata;
- endcase
- cycle <= 0;
- end
- endcase
- end
- `INSN_LD_SP_HL: begin
- case (cycle)
- 0: begin
- cycle <= 1;
- registers[`REG_SPH] <= tmp;
- end
- 1: begin
- cycle <= 0;
- registers[`REG_SPL] <= tmp;
- end
- endcase
- end
- `INSN_PUSH_reg: begin /* PUSH is 16 cycles! */
- case (cycle)
- 0: begin
- {registers[`REG_SPH],registers[`REG_SPL]} <=
- {registers[`REG_SPH],registers[`REG_SPL]} - 1;
- cycle <= 1;
- end
- 1: begin
- {registers[`REG_SPH],registers[`REG_SPL]} <=
- {registers[`REG_SPH],registers[`REG_SPL]} - 1;
- cycle <= 2;
- end
- 2: cycle <= 3;
- 3: cycle <= 0;
- endcase
- end
- `INSN_POP_reg: begin /* POP is 12 cycles! */
- case (cycle)
- 0: begin
- cycle <= 1;
- {registers[`REG_SPH],registers[`REG_SPL]} <=
- {registers[`REG_SPH],registers[`REG_SPL]} + 1;
- end
- 1: begin
- case (opcode[5:4])
- `INSN_stack_AF: registers[`REG_F] <= rdata;
- `INSN_stack_BC: registers[`REG_C] <= rdata;
- `INSN_stack_DE: registers[`REG_E] <= rdata;
- `INSN_stack_HL: registers[`REG_L] <= rdata;
- endcase
- {registers[`REG_SPH],registers[`REG_SPL]} <=
- {registers[`REG_SPH],registers[`REG_SPL]} + 1;
- cycle <= 2;
- end
- 2: begin
- case (opcode[5:4])
- `INSN_stack_AF: registers[`REG_A] <= rdata;
- `INSN_stack_BC: registers[`REG_B] <= rdata;
- `INSN_stack_DE: registers[`REG_D] <= rdata;
- `INSN_stack_HL: registers[`REG_H] <= rdata;
- endcase
- cycle <= 0;
- end
- endcase
- end
- `INSN_LDH_AC: begin
- case (cycle)
- 0: cycle <= 1;
- 1: begin
- cycle <= 0;
- if (opcode[4])
- registers[`REG_A] <= rdata;
- end
- endcase
- end
- `INSN_LDx_AHL: begin
- case (cycle)
- 0: cycle <= 1;
- 1: begin
- cycle <= 0;
- if (opcode[3])
- registers[`REG_A] <= rdata;
- {registers[`REG_H],registers[`REG_L]} <=
- opcode[4] ? // if set, LDD, else LDI
- ({registers[`REG_H],registers[`REG_L]} - 1) :
- ({registers[`REG_H],registers[`REG_L]} + 1);
- end
- endcase
- end
- `INSN_ALU8: begin
- if ((opcode[2:0] == `INSN_reg_dHL) && (cycle == 0)) begin
- /* Sit on our asses. */
- cycle <= 1;
- end else begin /* Actually do the computation! */
- case (opcode[5:3])
- `INSN_alu_ADD: begin
- registers[`REG_A] <=
- registers[`REG_A] + tmp;
- registers[`REG_F] <=
- { /* Z */ ((registers[`REG_A] + tmp) == 0) ? 1'b1 : 1'b0,
- /* N */ 0,
- /* H */ (({1'b0,registers[`REG_A][3:0]} + {1'b0,tmp[3:0]}) >> 4 == 1) ? 1'b1 : 1'b0,
- /* C */ (({1'b0,registers[`REG_A]} + {1'b0,tmp}) >> 8 == 1) ? 1'b1 : 1'b0,
- registers[`REG_F][3:0]
- };
- end
- `INSN_alu_ADC: begin
- registers[`REG_A] <=
- registers[`REG_A] + tmp + {7'b0,registers[`REG_F][4]};
- registers[`REG_F] <=
- { /* Z */ ((registers[`REG_A] + tmp + {7'b0,registers[`REG_F][4]}) == 0) ? 1'b1 : 1'b0,
- /* N */ 0,
- /* H */ (({1'b0,registers[`REG_A][3:0]} + {1'b0,tmp[3:0]} + {4'b0,registers[`REG_F][4]}) >> 4 == 1) ? 1'b1 : 1'b0,
- /* C */ (({1'b0,registers[`REG_A]} + {1'b0,tmp} + {8'b0,registers[`REG_F][4]}) >> 8 == 1) ? 1'b1 : 1'b0,
- registers[`REG_F][3:0]
- };
- end
- `INSN_alu_AND: begin
- registers[`REG_A] <=
- registers[`REG_A] & tmp;
- registers[`REG_F] <=
- { /* Z */ ((registers[`REG_A] & tmp) == 0) ? 1'b1 : 1'b0,
- 0,1,0,
- registers[`REG_F][3:0]
- };
- end
- `INSN_alu_OR: begin
- registers[`REG_A] <=
- registers[`REG_A] | tmp;
- registers[`REG_F] <=
- { /* Z */ ((registers[`REG_A] | tmp) == 0) ? 1'b1 : 1'b0,
- 0,0,0,
- registers[`REG_F][3:0]
- };
- end
- `INSN_alu_XOR: begin
- registers[`REG_A] <=
- registers[`REG_A] ^ tmp;
- registers[`REG_F] <=
- { /* Z */ ((registers[`REG_A] ^ tmp) == 0) ? 1'b1 : 1'b0,
- 0,0,0,
- registers[`REG_F][3:0]
- };
- end
- default:
- $stop;
- endcase
- end
- end
+ `define WRITEBACK
+ `include "allinsns.v"
+ `undef WRITEBACK
+ default:
+ $stop;
endcase
state <= `STATE_FETCH;
end
endcase
endmodule
-
-`timescale 1ns / 1ps
-module TestBench();
- reg clk = 0;
- wire [15:0] addr;
- wire [7:0] data;
- wire wr, rd;
- reg [7:0] rom [2047:0];
-
- initial $readmemh("rom.hex", rom);
- always #10 clk <= ~clk;
- GBZ80Core core(
- .clk(clk),
- .busaddress(addr),
- .busdata(data),
- .buswr(wr),
- .busrd(rd));
- assign data = rd ? rom[addr] : 8'bzzzzzzzz;
-endmodule