input clk,
input wr, rd);
+ reg [7:0] odata;
+
+ // synthesis attribute ram_style of rom is block
reg [7:0] rom [1023:0];
initial $readmemh("rom.hex", rom);
wire decode = address[15:13] == 0;
- wire [7:0] odata = rom[address[10:0]];
+ always @(posedge clk)
+ odata <= rom[address[10:0]];
assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
- //assign data = rd ? odata : 8'bzzzzzzzz;
endmodule
-module MiniRAM( /* XXX will need to go INSIDE the CPU for when we do DMA */
+module BootstrapROM(
+ input [15:0] address,
+ inout [7:0] data,
+ input clk,
+ input wr, rd);
+
+ reg [7:0] brom [255:0];
+ initial $readmemh("bootstrap.hex", brom);
+
+ wire decode = address[15:8] == 0;
+ wire [7:0] odata = brom[address[7:0]];
+ assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
+endmodule
+
+module MiniRAM(
input [15:0] address,
inout [7:0] data,
input clk,
reg [7:0] odata;
assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
- always @(negedge clk)
+ always @(posedge clk)
begin
if (decode) // This has to go this way. The only way XST knows how to do
begin // block ram is chip select, write enable, and always
odata <= ram[address[6:0]];
end
end
+endmodule
module InternalRAM(
input [15:0] address,
reg [7:0] odata;
assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
- always @(negedge clk)
+ always @(posedge clk)
begin
if (decode) // This has to go this way. The only way XST knows how to do
begin // block ram is chip select, write enable, and always
reg [7:0] odata;
assign data = (rd && decode) ? odata : 8'bzzzzzzzz;
- always @(negedge clk)
+ always @(posedge clk)
begin
if (decode && rd)
odata <= switches;
end
endmodule
+`ifdef isim
+module Dumpable(input [2:0] r, g, input [1:0] b, input hs, vs, vgaclk);
+endmodule
+`endif
+
module CoreTop(
+`ifdef isim
+ output reg vgaclk = 0,
+ output reg clk = 0,
+`else
input xtal,
input [7:0] switches,
input [3:0] buttons,
output serio,
output wire [3:0] digits,
output wire [7:0] seven,
+`endif
output wire hs, vs,
output wire [2:0] r, g,
- output wire [1:0] b);
+ output wire [1:0] b,
+ output wire soundl, soundr);
+
+`ifdef isim
+ always #62 clk <= ~clk;
+ always #100 vgaclk <= ~vgaclk;
+
+ Dumpable dump(r,g,b,hs,vs,vgaclk);
+ wire [7:0] leds;
+ wire serio;
+ wire [3:0] digits;
+ wire [7:0] seven;
+ wire [7:0] switches = 8'b0;
+ wire [3:0] buttons = 4'b0;
+`else
wire xtalb, clk, vgaclk;
IBUFG iclkbuf(.O(xtalb), .I(xtal));
CPUDCM dcm (.CLKIN_IN(xtalb), .CLKFX_OUT(clk));
pixDCM pixdcm (.CLKIN_IN(xtalb), .CLKFX_OUT(vgaclk));
-
- wire [15:0] addr;
- wire [7:0] data;
- wire wr, rd;
+`endif
+
+ wire [15:0] addr [1:0];
+ wire [7:0] data [1:0];
+ wire wr [1:0], rd [1:0];
wire irq, tmrirq, lcdcirq, vblankirq;
wire [7:0] jaddr;
GBZ80Core core(
.clk(clk),
- .busaddress(addr),
- .busdata(data),
- .buswr(wr),
- .busrd(rd),
+ .bus0address(addr[0]),
+ .bus0data(data[0]),
+ .bus0wr(wr[0]),
+ .bus0rd(rd[0]),
+ .bus1address(addr[1]),
+ .bus1data(data[1]),
+ .bus1wr(wr[1]),
+ .bus1rd(rd[1]),
.irq(irq),
.jaddr(jaddr),
.state(state));
+ BootstrapROM brom(
+ .address(addr[1]),
+ .data(data[1]),
+ .clk(clk),
+ .wr(wr[1]),
+ .rd(rd[1]));
+
ROM rom(
- .address(addr),
- .data(data),
+ .address(addr[0]),
+ .data(data[0]),
.clk(clk),
- .wr(wr),
- .rd(rd));
+ .wr(wr[0]),
+ .rd(rd[0]));
wire lcdhs, lcdvs, lcdclk;
wire [2:0] lcdr, lcdg;
wire [1:0] lcdb;
LCDC lcdc(
- .addr(addr),
- .data(data),
.clk(clk),
- .wr(wr),
- .rd(rd),
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
.lcdcirq(lcdcirq),
.vblankirq(vblankirq),
.lcdclk(lcdclk),
.vgab(b));
AddrMon amon(
- .addr(addr),
.clk(clk),
+ .addr(addr[0]),
.digit(digits),
.out(seven),
.freeze(buttons[0]),
4'b0100) );
Switches sw(
- .address(addr),
- .data(data),
.clk(clk),
- .wr(wr),
- .rd(rd),
+ .address(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
.ledout(leds),
.switches(switches)
);
UART nouart ( /* no u */
- .clk(clk),
- .wr(wr),
- .rd(rd),
- .addr(addr),
- .data(data),
+ .clk(clk),
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
.serial(serio)
);
InternalRAM ram(
- .address(addr),
- .data(data),
.clk(clk),
- .wr(wr),
- .rd(rd)
+ .address(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0])
);
MiniRAM mram(
- .address(addr),
- .data(data),
.clk(clk),
- .wr(wr),
- .rd(rd)
+ .address(addr[1]),
+ .data(data[1]),
+ .wr(wr[1]),
+ .rd(rd[1])
);
Timer tmr(
.clk(clk),
- .wr(wr),
- .rd(rd),
- .addr(addr),
- .data(data),
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
.irq(tmrirq)
);
Interrupt intr(
.clk(clk),
- .rd(rd),
- .wr(wr),
- .addr(addr),
- .data(data),
+ .addr(addr[0]),
+ .data(data[0]),
+ .wr(wr[0]),
+ .rd(rd[0]),
.vblank(vblankirq),
.lcdc(lcdcirq),
.tovf(tmrirq),
- .serial(0),
- .buttons(0),
+ .serial(1'b0),
+ .buttons(1'b0),
.master(irq),
.jaddr(jaddr));
-endmodule
-
-module TestBench();
- reg clk = 1;
- wire [15:0] addr;
- wire [7:0] data;
- wire wr, rd;
-
- wire irq, tmrirq;
- wire [7:0] jaddr;
- wire [7:0] leds;
- wire [7:0] switches;
-
- always #62 clk <= ~clk;
- GBZ80Core core(
- .clk(clk),
- .busaddress(addr),
- .busdata(data),
- .buswr(wr),
- .busrd(rd),
- .irq(irq),
- .jaddr(jaddr));
-
- ROM rom(
- .clk(clk),
- .address(addr),
- .data(data),
- .wr(wr),
- .rd(rd));
-
- InternalRAM ram(
- .address(addr),
- .data(data),
- .clk(clk),
- .wr(wr),
- .rd(rd));
-
- wire serio;
- UART uart(
- .addr(addr),
- .data(data),
- .clk(clk),
- .wr(wr),
- .rd(rd),
- .serial(serio));
-
- Timer tmr(
- .clk(clk),
- .wr(wr),
- .rd(rd),
- .addr(addr),
- .data(data),
- .irq(tmrirq));
-
- Interrupt intr(
- .clk(clk),
- .rd(rd),
- .wr(wr),
- .addr(addr),
- .data(data),
- .vblank(0),
- .lcdc(0),
- .tovf(tmrirq),
- .serial(0),
- .buttons(0),
- .master(irq),
- .jaddr(jaddr));
-
- Switches sw(
- .clk(clk),
- .address(addr),
- .data(data),
- .wr(wr),
- .rd(rd),
- .switches(switches),
- .ledout(leds));
+ Soundcore sound(
+ .core_clk(clk),
+ .addr(addr[0]),
+ .data(data[0]),
+ .rd(rd[0]),
+ .wr(wr[0]),
+ .snd_data_l(soundl),
+ .snd_data_r(soundr));
endmodule