`timescale 1ns / 1ps module ROM( input [15:0] address, inout [7:0] data, input clk, input wr, rd); reg [7:0] odata; // synthesis attribute ram_style of rom is block reg [7:0] rom [1023:0]; initial $readmemh("rom.hex", rom); wire decode = address[15:13] == 0; always @(posedge clk) odata <= rom[address[10:0]]; assign data = (rd && decode) ? odata : 8'bzzzzzzzz; endmodule module BootstrapROM( input [15:0] address, inout [7:0] data, input clk, input wr, rd); reg [7:0] brom [255:0]; initial $readmemh("bootstrap.hex", brom); wire decode = address[15:8] == 0; wire [7:0] odata = brom[address[7:0]]; assign data = (rd && decode) ? odata : 8'bzzzzzzzz; endmodule module MiniRAM( input [15:0] address, inout [7:0] data, input clk, input wr, rd); reg [7:0] ram [127:0]; wire decode = (address >= 16'hFF80) && (address <= 16'hFFFE); reg [7:0] odata; assign data = (rd && decode) ? odata : 8'bzzzzzzzz; always @(posedge clk) begin if (decode) // This has to go this way. The only way XST knows how to do begin // block ram is chip select, write enable, and always if (wr) // reading. "else if rd" does not cut it ... ram[address[6:0]] <= data; odata <= ram[address[6:0]]; end end endmodule module CellularRAM( input clk, input [15:0] address, inout [7:0] data, input wr, rd, output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK, output wire [22:0] cr_A, inout [15:0] cr_DQ); parameter ADDR_PROGADDRH = 16'hFF60; parameter ADDR_PROGADDRM = 16'hFF61; parameter ADDR_PROGADDRL = 16'hFF62; parameter ADDR_PROGDATA = 16'hFF63; reg [7:0] progaddrh, progaddrm, progaddrl; assign cr_nADV = 0; /* Addresses are always valid! :D */ assign cr_nCE = 0; /* The chip is enabled */ assign cr_nLB = 0; /* Lower byte is enabled */ assign cr_nUB = 0; /* Upper byte is enabled */ assign cr_CRE = 0; /* Data writes, not config */ assign cr_CLK = 0; /* Clock? I think not! */ wire decode = (address[15:14] == 2'b00) /* extrom */ || (address[15:13] == 3'b101) /* extram */ || (address == ADDR_PROGDATA); assign cr_nOE = decode ? ~rd : 1; assign cr_nWE = decode ? ~wr : 1; assign cr_DQ = (~cr_nOE) ? 16'bzzzzzzzzzzzzzzzz : {8'b0, data}; assign cr_A = (address[15:14] == 2'b00) ? /* extrom */ {9'b0,address[13:0]} : (address[15:13] == 3'b101) ? {1'b1, 9'b0, address[12:0]} : (address == ADDR_PROGDATA) ? {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]} : 23'b0; reg [7:0] regbuf; always @(posedge clk) case (address) ADDR_PROGADDRH: if (wr) progaddrh <= data; ADDR_PROGADDRM: if (wr) progaddrm <= data; ADDR_PROGADDRL: if (wr) progaddrl <= data; endcase assign data = (rd && decode) ? (address == ADDR_PROGADDRH) ? progaddrh : (address == ADDR_PROGADDRM) ? progaddrm : (address == ADDR_PROGADDRL) ? progaddrl : cr_DQ : 8'bzzzzzzzz; endmodule module InternalRAM( input [15:0] address, inout [7:0] data, input clk, input wr, rd); // synthesis attribute ram_style of ram is block reg [7:0] ram [8191:0]; wire decode = (address >= 16'hC000) && (address <= 16'hFDFF); /* This includes echo RAM. */ reg [7:0] odata; assign data = (rd && decode) ? odata : 8'bzzzzzzzz; always @(posedge clk) begin if (decode) // This has to go this way. The only way XST knows how to do begin // block ram is chip select, write enable, and always if (wr) // reading. "else if rd" does not cut it ... ram[address[12:0]] <= data; odata <= ram[address[12:0]]; end end endmodule module Switches( input [15:0] address, inout [7:0] data, input clk, input wr, rd, input [7:0] switches, output reg [7:0] ledout = 0); wire decode = address == 16'hFF51; reg [7:0] odata; assign data = (rd && decode) ? odata : 8'bzzzzzzzz; always @(posedge clk) begin if (decode && rd) odata <= switches; else if (decode && wr) ledout <= data; end endmodule `ifdef isim module Dumpable(input [2:0] r, g, input [1:0] b, input hs, vs, vgaclk); endmodule `endif module CoreTop( `ifdef isim output reg vgaclk = 0, output reg clk = 0, `else input xtal, input [7:0] switches, input [3:0] buttons, output wire [7:0] leds, output serio, output wire [3:0] digits, output wire [7:0] seven, output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK, output wire [22:0] cr_A, inout [15:0] cr_DQ, `endif output wire hs, vs, output wire [2:0] r, g, output wire [1:0] b, output wire soundl, soundr); `ifdef isim always #62 clk <= ~clk; always #100 vgaclk <= ~vgaclk; Dumpable dump(r,g,b,hs,vs,vgaclk); wire [7:0] leds; wire serio; wire [3:0] digits; wire [7:0] seven; wire [7:0] switches = 8'b0; wire [3:0] buttons = 4'b0; `else wire xtalb, clk, vgaclk; IBUFG iclkbuf(.O(xtalb), .I(xtal)); CPUDCM dcm (.CLKIN_IN(xtalb), .CLKFX_OUT(clk)); pixDCM pixdcm (.CLKIN_IN(xtalb), .CLKFX_OUT(vgaclk)); `endif wire [15:0] addr [1:0]; wire [7:0] data [1:0]; wire wr [1:0], rd [1:0]; wire irq, tmrirq, lcdcirq, vblankirq; wire [7:0] jaddr; wire [1:0] state; GBZ80Core core( .clk(clk), .bus0address(addr[0]), .bus0data(data[0]), .bus0wr(wr[0]), .bus0rd(rd[0]), .bus1address(addr[1]), .bus1data(data[1]), .bus1wr(wr[1]), .bus1rd(rd[1]), .irq(irq), .jaddr(jaddr), .state(state)); BootstrapROM brom( .address(addr[1]), .data(data[1]), .clk(clk), .wr(wr[1]), .rd(rd[1])); `ifdef isim ROM rom( .address(addr[0]), .data(data[0]), .clk(clk), .wr(wr[0]), .rd(rd[0])); `else CellularRAM cellram( .address(addr[0]), .data(data[0]), .clk(clk), .wr(wr[0]), .rd(rd[0]) .cr_nADV(cr_nADV), .cr_nCE(cr_nCE), .cr_nOE(cr_nOE), .cr_nWR(cr_nWE), .cr_CRE(cr_CRE), .cr_nLB(cr_nLB), .cr_nUB(cr_nUB), .cr_CLK(cr_CLK), .cr_A(cr_A), .cr_DQ(cr_DQ)); `endif wire lcdhs, lcdvs, lcdclk; wire [2:0] lcdr, lcdg; wire [1:0] lcdb; LCDC lcdc( .clk(clk), .addr(addr[0]), .data(data[0]), .wr(wr[0]), .rd(rd[0]), .lcdcirq(lcdcirq), .vblankirq(vblankirq), .lcdclk(lcdclk), .lcdhs(lcdhs), .lcdvs(lcdvs), .lcdr(lcdr), .lcdg(lcdg), .lcdb(lcdb)); Framebuffer fb( .lcdclk(lcdclk), .lcdhs(lcdhs), .lcdvs(lcdvs), .lcdr(lcdr), .lcdg(lcdg), .lcdb(lcdb), .vgaclk(vgaclk), .vgahs(hs), .vgavs(vs), .vgar(r), .vgag(g), .vgab(b)); AddrMon amon( .clk(clk), .addr(addr[0]), .digit(digits), .out(seven), .freeze(buttons[0]), .periods( (state == 2'b00) ? 4'b0010 : (state == 2'b01) ? 4'b0001 : (state == 2'b10) ? 4'b1000 : 4'b0100) ); Switches sw( .clk(clk), .address(addr[0]), .data(data[0]), .wr(wr[0]), .rd(rd[0]), .ledout(leds), .switches(switches) ); UART nouart ( /* no u */ .clk(clk), .addr(addr[0]), .data(data[0]), .wr(wr[0]), .rd(rd[0]), .serial(serio) ); InternalRAM ram( .clk(clk), .address(addr[0]), .data(data[0]), .wr(wr[0]), .rd(rd[0]) ); MiniRAM mram( .clk(clk), .address(addr[1]), .data(data[1]), .wr(wr[1]), .rd(rd[1]) ); Timer tmr( .clk(clk), .addr(addr[0]), .data(data[0]), .wr(wr[0]), .rd(rd[0]), .irq(tmrirq) ); Interrupt intr( .clk(clk), .addr(addr[0]), .data(data[0]), .wr(wr[0]), .rd(rd[0]), .vblank(vblankirq), .lcdc(lcdcirq), .tovf(tmrirq), .serial(1'b0), .buttons(1'b0), .master(irq), .jaddr(jaddr)); Soundcore sound( .core_clk(clk), .addr(addr[0]), .data(data[0]), .rd(rd[0]), .wr(wr[0]), .snd_data_l(soundl), .snd_data_r(soundr)); endmodule