]>
Commit | Line | Data |
---|---|---|
1 | ||
2 | `timescale 1ns / 1ps | |
3 | module ROM( | |
4 | input [15:0] address, | |
5 | inout [7:0] data, | |
6 | input clk, | |
7 | input wr, rd); | |
8 | ||
9 | reg rdlatch = 0; | |
10 | reg [7:0] odata; | |
11 | ||
12 | // synthesis attribute ram_style of rom is block | |
13 | reg [7:0] rom [1023:0]; | |
14 | initial $readmemh("rom.hex", rom); | |
15 | ||
16 | wire decode = address[15:13] == 0; | |
17 | always @(posedge clk) begin | |
18 | rdlatch <= rd && decode; | |
19 | odata <= rom[address[10:0]]; | |
20 | end | |
21 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
22 | endmodule | |
23 | ||
24 | module BootstrapROM( | |
25 | input [15:0] address, | |
26 | inout [7:0] data, | |
27 | input clk, | |
28 | input wr, rd); | |
29 | ||
30 | reg rdlatch = 0; | |
31 | reg [7:0] brom [255:0]; | |
32 | initial $readmemh("bootstrap.hex", brom); | |
33 | ||
34 | wire decode = address[15:8] == 0; | |
35 | wire [7:0] odata = brom[address[7:0]]; | |
36 | always @(posedge clk) | |
37 | rdlatch <= rd && decode; | |
38 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
39 | endmodule | |
40 | ||
41 | module MiniRAM( | |
42 | input [15:0] address, | |
43 | inout [7:0] data, | |
44 | input clk, | |
45 | input wr, rd); | |
46 | ||
47 | reg [7:0] ram [127:0]; | |
48 | ||
49 | wire decode = (address >= 16'hFF80) && (address <= 16'hFFFE); | |
50 | reg rdlatch = 0; | |
51 | reg [7:0] odata; | |
52 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
53 | ||
54 | always @(posedge clk) | |
55 | begin | |
56 | rdlatch <= rd && decode; | |
57 | if (decode) // This has to go this way. The only way XST knows how to do | |
58 | begin // block ram is chip select, write enable, and always | |
59 | if (wr) // reading. "else if rd" does not cut it ... | |
60 | ram[address[6:0]] <= data; | |
61 | odata <= ram[address[6:0]]; | |
62 | end | |
63 | end | |
64 | endmodule | |
65 | ||
66 | module CellularRAM( | |
67 | input clk, | |
68 | input [15:0] address, | |
69 | inout [7:0] data, | |
70 | input wr, rd, | |
71 | output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK, | |
72 | output wire [22:0] cr_A, | |
73 | inout [15:0] cr_DQ); | |
74 | ||
75 | parameter ADDR_PROGADDRH = 16'hFF60; | |
76 | parameter ADDR_PROGADDRM = 16'hFF61; | |
77 | parameter ADDR_PROGADDRL = 16'hFF62; | |
78 | parameter ADDR_PROGDATA = 16'hFF63; | |
79 | ||
80 | reg rdlatch = 0, wrlatch = 0; | |
81 | reg [15:0] addrlatch = 0; | |
82 | reg [7:0] datalatch = 0; | |
83 | ||
84 | reg [7:0] progaddrh, progaddrm, progaddrl; | |
85 | ||
86 | assign cr_nADV = 0; /* Addresses are always valid! :D */ | |
87 | assign cr_nCE = 0; /* The chip is enabled */ | |
88 | assign cr_nLB = 0; /* Lower byte is enabled */ | |
89 | assign cr_nUB = 0; /* Upper byte is enabled */ | |
90 | assign cr_CRE = 0; /* Data writes, not config */ | |
91 | assign cr_CLK = 0; /* Clock? I think not! */ | |
92 | ||
93 | wire decode = (addrlatch[15:14] == 2'b00) /* extrom */ || (addrlatch[15:13] == 3'b101) /* extram */ || (addrlatch == ADDR_PROGDATA); | |
94 | ||
95 | assign cr_nOE = decode ? ~rdlatch : 1; | |
96 | assign cr_nWE = decode ? ~wrlatch : 1; | |
97 | ||
98 | assign cr_DQ = (~cr_nOE) ? 16'bzzzzzzzzzzzzzzzz : {8'b0, datalatch}; | |
99 | assign cr_A = (addrlatch[15:14] == 2'b00) ? /* extrom */ {9'b0,addrlatch[13:0]} : | |
100 | (addrlatch[15:13] == 3'b101) ? {1'b1, 9'b0, addrlatch[12:0]} : | |
101 | (addrlatch == ADDR_PROGDATA) ? {progaddrh[6:0], progaddrm[7:0], progaddrl[7:0]} : | |
102 | 23'b0; | |
103 | ||
104 | reg [7:0] regbuf; | |
105 | ||
106 | always @(posedge clk) begin | |
107 | case (address) | |
108 | ADDR_PROGADDRH: if (wr) progaddrh <= data; | |
109 | ADDR_PROGADDRM: if (wr) progaddrm <= data; | |
110 | ADDR_PROGADDRL: if (wr) progaddrl <= data; | |
111 | endcase | |
112 | rdlatch <= rd; | |
113 | wrlatch <= wr; | |
114 | addrlatch <= address; | |
115 | datalatch <= data; | |
116 | end | |
117 | ||
118 | assign data = (rdlatch && decode) ? | |
119 | (addrlatch == ADDR_PROGADDRH) ? progaddrh : | |
120 | (addrlatch == ADDR_PROGADDRM) ? progaddrm : | |
121 | (addrlatch == ADDR_PROGADDRL) ? progaddrl : | |
122 | cr_DQ | |
123 | : 8'bzzzzzzzz; | |
124 | endmodule | |
125 | ||
126 | module InternalRAM( | |
127 | input [15:0] address, | |
128 | inout [7:0] data, | |
129 | input clk, | |
130 | input wr, rd); | |
131 | ||
132 | // synthesis attribute ram_style of ram is block | |
133 | reg [7:0] ram [8191:0]; | |
134 | ||
135 | wire decode = (address >= 16'hC000) && (address <= 16'hFDFF); /* This includes echo RAM. */ | |
136 | reg [7:0] odata; | |
137 | reg rdlatch = 0; | |
138 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
139 | ||
140 | always @(posedge clk) | |
141 | begin | |
142 | rdlatch <= rd && decode; | |
143 | if (decode) // This has to go this way. The only way XST knows how to do | |
144 | begin // block ram is chip select, write enable, and always | |
145 | if (wr) // reading. "else if rd" does not cut it ... | |
146 | ram[address[12:0]] <= data; | |
147 | odata <= ram[address[12:0]]; | |
148 | end | |
149 | end | |
150 | endmodule | |
151 | ||
152 | module Switches( | |
153 | input [15:0] address, | |
154 | inout [7:0] data, | |
155 | input clk, | |
156 | input wr, rd, | |
157 | input [7:0] switches, | |
158 | output reg [7:0] ledout = 0); | |
159 | ||
160 | wire decode = address == 16'hFF51; | |
161 | reg [7:0] odata; | |
162 | reg rdlatch = 0; | |
163 | assign data = rdlatch ? odata : 8'bzzzzzzzz; | |
164 | ||
165 | always @(posedge clk) | |
166 | begin | |
167 | rdlatch <= rd && decode; | |
168 | if (decode && rd) | |
169 | odata <= switches; | |
170 | else if (decode && wr) | |
171 | ledout <= data; | |
172 | end | |
173 | endmodule | |
174 | ||
175 | `ifdef isim | |
176 | module Dumpable(input [2:0] r, g, input [1:0] b, input hs, vs, vgaclk); | |
177 | endmodule | |
178 | `endif | |
179 | ||
180 | module CoreTop( | |
181 | `ifdef isim | |
182 | output reg vgaclk = 0, | |
183 | output reg clk = 0, | |
184 | `else | |
185 | input xtal, | |
186 | input [7:0] switches, | |
187 | input [3:0] buttons, | |
188 | output wire [7:0] leds, | |
189 | output serio, | |
190 | output wire [3:0] digits, | |
191 | output wire [7:0] seven, | |
192 | output wire cr_nADV, cr_nCE, cr_nOE, cr_nWE, cr_CRE, cr_nLB, cr_nUB, cr_CLK, | |
193 | output wire [22:0] cr_A, | |
194 | inout [15:0] cr_DQ, | |
195 | `endif | |
196 | output wire hs, vs, | |
197 | output wire [2:0] r, g, | |
198 | output wire [1:0] b, | |
199 | output wire soundl, soundr); | |
200 | ||
201 | `ifdef isim | |
202 | always #62 clk <= ~clk; | |
203 | always #100 vgaclk <= ~vgaclk; | |
204 | ||
205 | Dumpable dump(r,g,b,hs,vs,vgaclk); | |
206 | ||
207 | wire [7:0] leds; | |
208 | wire serio; | |
209 | wire [3:0] digits; | |
210 | wire [7:0] seven; | |
211 | wire [7:0] switches = 8'b0; | |
212 | wire [3:0] buttons = 4'b0; | |
213 | `else | |
214 | wire xtalb, clk, vgaclk; | |
215 | IBUFG iclkbuf(.O(xtalb), .I(xtal)); | |
216 | CPUDCM dcm (.CLKIN_IN(xtalb), .CLKFX_OUT(clk)); | |
217 | pixDCM pixdcm (.CLKIN_IN(xtalb), .CLKFX_OUT(vgaclk)); | |
218 | `endif | |
219 | ||
220 | wire [15:0] addr [1:0]; | |
221 | wire [7:0] data [1:0]; | |
222 | wire wr [1:0], rd [1:0]; | |
223 | ||
224 | wire irq, tmrirq, lcdcirq, vblankirq; | |
225 | wire [7:0] jaddr; | |
226 | wire [1:0] state; | |
227 | ||
228 | GBZ80Core core( | |
229 | .clk(clk), | |
230 | .bus0address(addr[0]), | |
231 | .bus0data(data[0]), | |
232 | .bus0wr(wr[0]), | |
233 | .bus0rd(rd[0]), | |
234 | .bus1address(addr[1]), | |
235 | .bus1data(data[1]), | |
236 | .bus1wr(wr[1]), | |
237 | .bus1rd(rd[1]), | |
238 | .irq(irq), | |
239 | .jaddr(jaddr), | |
240 | .state(state)); | |
241 | ||
242 | BootstrapROM brom( | |
243 | .address(addr[1]), | |
244 | .data(data[1]), | |
245 | .clk(clk), | |
246 | .wr(wr[1]), | |
247 | .rd(rd[1])); | |
248 | ||
249 | `ifdef isim | |
250 | ROM rom( | |
251 | .address(addr[0]), | |
252 | .data(data[0]), | |
253 | .clk(clk), | |
254 | .wr(wr[0]), | |
255 | .rd(rd[0])); | |
256 | `else | |
257 | CellularRAM cellram( | |
258 | .address(addr[0]), | |
259 | .data(data[0]), | |
260 | .clk(clk), | |
261 | .wr(wr[0]), | |
262 | .rd(rd[0]) | |
263 | .cr_nADV(cr_nADV), | |
264 | .cr_nCE(cr_nCE), | |
265 | .cr_nOE(cr_nOE), | |
266 | .cr_nWR(cr_nWE), | |
267 | .cr_CRE(cr_CRE), | |
268 | .cr_nLB(cr_nLB), | |
269 | .cr_nUB(cr_nUB), | |
270 | .cr_CLK(cr_CLK), | |
271 | .cr_A(cr_A), | |
272 | .cr_DQ(cr_DQ)); | |
273 | `endif | |
274 | ||
275 | wire lcdhs, lcdvs, lcdclk; | |
276 | wire [2:0] lcdr, lcdg; | |
277 | wire [1:0] lcdb; | |
278 | ||
279 | LCDC lcdc( | |
280 | .clk(clk), | |
281 | .addr(addr[0]), | |
282 | .data(data[0]), | |
283 | .wr(wr[0]), | |
284 | .rd(rd[0]), | |
285 | .lcdcirq(lcdcirq), | |
286 | .vblankirq(vblankirq), | |
287 | .lcdclk(lcdclk), | |
288 | .lcdhs(lcdhs), | |
289 | .lcdvs(lcdvs), | |
290 | .lcdr(lcdr), | |
291 | .lcdg(lcdg), | |
292 | .lcdb(lcdb)); | |
293 | ||
294 | Framebuffer fb( | |
295 | .lcdclk(lcdclk), | |
296 | .lcdhs(lcdhs), | |
297 | .lcdvs(lcdvs), | |
298 | .lcdr(lcdr), | |
299 | .lcdg(lcdg), | |
300 | .lcdb(lcdb), | |
301 | .vgaclk(vgaclk), | |
302 | .vgahs(hs), | |
303 | .vgavs(vs), | |
304 | .vgar(r), | |
305 | .vgag(g), | |
306 | .vgab(b)); | |
307 | ||
308 | AddrMon amon( | |
309 | .clk(clk), | |
310 | .addr(addr[0]), | |
311 | .digit(digits), | |
312 | .out(seven), | |
313 | .freeze(buttons[0]), | |
314 | .periods( | |
315 | (state == 2'b00) ? 4'b0010 : | |
316 | (state == 2'b01) ? 4'b0001 : | |
317 | (state == 2'b10) ? 4'b1000 : | |
318 | 4'b0100) ); | |
319 | ||
320 | Switches sw( | |
321 | .clk(clk), | |
322 | .address(addr[0]), | |
323 | .data(data[0]), | |
324 | .wr(wr[0]), | |
325 | .rd(rd[0]), | |
326 | .ledout(leds), | |
327 | .switches(switches) | |
328 | ); | |
329 | ||
330 | UART nouart ( /* no u */ | |
331 | .clk(clk), | |
332 | .addr(addr[0]), | |
333 | .data(data[0]), | |
334 | .wr(wr[0]), | |
335 | .rd(rd[0]), | |
336 | .serial(serio) | |
337 | ); | |
338 | ||
339 | InternalRAM ram( | |
340 | .clk(clk), | |
341 | .address(addr[0]), | |
342 | .data(data[0]), | |
343 | .wr(wr[0]), | |
344 | .rd(rd[0]) | |
345 | ); | |
346 | ||
347 | MiniRAM mram( | |
348 | .clk(clk), | |
349 | .address(addr[1]), | |
350 | .data(data[1]), | |
351 | .wr(wr[1]), | |
352 | .rd(rd[1]) | |
353 | ); | |
354 | ||
355 | Timer tmr( | |
356 | .clk(clk), | |
357 | .addr(addr[0]), | |
358 | .data(data[0]), | |
359 | .wr(wr[0]), | |
360 | .rd(rd[0]), | |
361 | .irq(tmrirq) | |
362 | ); | |
363 | ||
364 | Interrupt intr( | |
365 | .clk(clk), | |
366 | .addr(addr[0]), | |
367 | .data(data[0]), | |
368 | .wr(wr[0]), | |
369 | .rd(rd[0]), | |
370 | .vblank(vblankirq), | |
371 | .lcdc(lcdcirq), | |
372 | .tovf(tmrirq), | |
373 | .serial(1'b0), | |
374 | .buttons(1'b0), | |
375 | .master(irq), | |
376 | .jaddr(jaddr)); | |
377 | ||
378 | Soundcore sound( | |
379 | .core_clk(clk), | |
380 | .addr(addr[0]), | |
381 | .data(data[0]), | |
382 | .rd(rd[0]), | |
383 | .wr(wr[0]), | |
384 | .snd_data_l(soundl), | |
385 | .snd_data_r(soundr)); | |
386 | endmodule |