]> Joshua Wise's Git repositories - fpgaboy.git/blame_incremental - GBZ80Core.v
JP
[fpgaboy.git] / GBZ80Core.v
... / ...
CommitLineData
1`define REG_A 0
2`define REG_B 1
3`define REG_C 2
4`define REG_D 3
5`define REG_E 4
6`define REG_F 5
7`define REG_H 6
8`define REG_L 7
9`define REG_SPH 8
10`define REG_SPL 9
11`define REG_PCH 10
12`define REG_PCL 11
13
14`define FLAG_Z 8'b10000000
15`define FLAG_N 8'b01000000
16`define FLAG_H 8'b00100000
17`define FLAG_C 8'b00010000
18
19`define STATE_FETCH 2'h0
20`define STATE_DECODE 2'h1
21`define STATE_EXECUTE 2'h2
22`define STATE_WRITEBACK 2'h3
23
24`define INSN_LD_reg_imm8 8'b00xxx110
25`define INSN_HALT 8'b01110110
26`define INSN_LD_HL_reg 8'b01110xxx
27`define INSN_LD_reg_HL 8'b01xxx110
28`define INSN_LD_reg_reg 8'b01xxxxxx
29`define INSN_LD_reg_imm16 8'b00xx0001
30`define INSN_LD_SP_HL 8'b11111001
31`define INSN_PUSH_reg 8'b11xx0101
32`define INSN_POP_reg 8'b11xx0001
33`define INSN_LDH_AC 8'b111x0010 // Either LDH A,(C) or LDH (C),A
34`define INSN_LDx_AHL 8'b001xx010 // LDD/LDI A,(HL) / (HL),A
35`define INSN_ALU8 8'b10xxxxxx // 10 xxx yyy
36`define INSN_NOP 8'b00000000
37`define INSN_RST 8'b11xxx111
38`define INSN_RET 8'b110x1001 // 1 = RETI, 0 = RET
39`define INSN_CALL 8'b11001101
40`define INSN_JP_imm 8'b11000011
41`define INSN_JPCC_imm 8'b110xx010
42
43`define INSN_cc_NZ 2'b00
44`define INSN_cc_Z 2'b01
45`define INSN_cc_NC 2'b10
46`define INSN_cc_C 2'b11
47
48`define INSN_reg_A 3'b111
49`define INSN_reg_B 3'b000
50`define INSN_reg_C 3'b001
51`define INSN_reg_D 3'b010
52`define INSN_reg_E 3'b011
53`define INSN_reg_H 3'b100
54`define INSN_reg_L 3'b101
55`define INSN_reg_dHL 3'b110
56`define INSN_reg16_BC 2'b00
57`define INSN_reg16_DE 2'b01
58`define INSN_reg16_HL 2'b10
59`define INSN_reg16_SP 2'b11
60`define INSN_stack_AF 2'b11
61`define INSN_stack_BC 2'b00
62`define INSN_stack_DE 2'b01
63`define INSN_stack_HL 2'b10
64`define INSN_alu_ADD 3'b000
65`define INSN_alu_ADC 3'b001
66`define INSN_alu_SUB 3'b010
67`define INSN_alu_SBC 3'b011
68`define INSN_alu_AND 3'b100
69`define INSN_alu_XOR 3'b101
70`define INSN_alu_OR 3'b110
71`define INSN_alu_CP 3'b111 // Oh lawd, is dat some CP?
72
73module GBZ80Core(
74 input clk,
75 output reg [15:0] busaddress, /* BUS_* is latched on STATE_FETCH. */
76 inout [7:0] busdata,
77 output reg buswr, output reg busrd);
78
79 reg [1:0] state = 0; /* State within this bus cycle (see STATE_*). */
80 reg [2:0] cycle = 0; /* Cycle for instructions. */
81
82 reg [7:0] registers[11:0];
83
84 reg [15:0] address; /* Address for the next bus operation. */
85
86 reg [7:0] opcode; /* Opcode from the current machine cycle. */
87
88 reg [7:0] rdata, wdata; /* Read data from this bus cycle, or write data for the next. */
89 reg rd = 1, wr = 0, newcycle = 1;
90
91 reg [7:0] tmp, tmp2; /* Generic temporary regs. */
92
93 reg [7:0] buswdata;
94 assign busdata = buswr ? buswdata : 8'bzzzzzzzz;
95
96 reg ie = 0;
97
98 initial begin
99 registers[ 0] <= 0;
100 registers[ 1] <= 0;
101 registers[ 2] <= 0;
102 registers[ 3] <= 0;
103 registers[ 4] <= 0;
104 registers[ 5] <= 0;
105 registers[ 6] <= 0;
106 registers[ 7] <= 0;
107 registers[ 8] <= 0;
108 registers[ 9] <= 0;
109 registers[10] <= 0;
110 registers[11] <= 0;
111 ie <= 0;
112 rd <= 1;
113 wr <= 0;
114 newcycle <= 1;
115 state <= 0;
116 cycle <= 0;
117 end
118
119 always @(posedge clk)
120 case (state)
121 `STATE_FETCH: begin
122 if (newcycle) begin
123 busaddress <= {registers[`REG_PCH], registers[`REG_PCL]};
124 buswr <= 0;
125 busrd <= 1;
126 end else begin
127 busaddress <= address;
128 buswr <= wr;
129 busrd <= rd;
130 if (wr)
131 buswdata <= wdata;
132 end
133 state <= `STATE_DECODE;
134 end
135 `STATE_DECODE: begin
136 if (newcycle) begin
137 opcode <= busdata;
138 rdata <= busdata;
139 newcycle <= 0;
140 cycle <= 0;
141 end else begin
142 if (rd) rdata <= busdata;
143 cycle <= cycle + 1;
144 end
145 buswr <= 0;
146 busrd <= 0;
147 wr <= 0;
148 rd <= 0;
149 address <= 16'bxxxxxxxxxxxxxxxx; // Make it obvious if something of type has happened.
150 wdata <= 8'bxxxxxxxx;
151 state <= `STATE_EXECUTE;
152 end
153 `STATE_EXECUTE: begin
154`define EXEC_INC_PC \
155 {registers[`REG_PCH], registers[`REG_PCL]} <= {registers[`REG_PCH], registers[`REG_PCL]} + 1
156`define EXEC_NEXTADDR_PCINC \
157 address <= {registers[`REG_PCH], registers[`REG_PCL]} + 1
158`define EXEC_NEWCYCLE \
159 newcycle <= 1; rd <= 1; wr <= 0
160 casex (opcode)
161 `INSN_LD_reg_imm8: begin
162 case (cycle)
163 0: begin
164 `EXEC_INC_PC;
165 `EXEC_NEXTADDR_PCINC;
166 rd <= 1;
167 end
168 1: begin
169 `EXEC_INC_PC;
170 if (opcode[5:3] == `INSN_reg_dHL) begin
171 address <= {registers[`REG_H], registers[`REG_L]};
172 wdata <= rdata;
173 rd <= 0;
174 wr <= 1;
175 end else begin
176 `EXEC_NEWCYCLE;
177 end
178 end
179 2: begin
180 `EXEC_NEWCYCLE;
181 end
182 endcase
183 end
184 `INSN_HALT: begin
185 `EXEC_NEWCYCLE;
186 /* XXX Interrupts needed for HALT. */
187 end
188 `INSN_LD_HL_reg: begin
189 case (cycle)
190 0: begin
191 case (opcode[2:0])
192 `INSN_reg_A: wdata <= registers[`REG_A];
193 `INSN_reg_B: wdata <= registers[`REG_B];
194 `INSN_reg_C: wdata <= registers[`REG_C];
195 `INSN_reg_D: wdata <= registers[`REG_D];
196 `INSN_reg_E: wdata <= registers[`REG_E];
197 `INSN_reg_H: wdata <= registers[`REG_H];
198 `INSN_reg_L: wdata <= registers[`REG_L];
199 endcase
200 address <= {registers[`REG_H], registers[`REG_L]};
201 wr <= 1; rd <= 0;
202 end
203 1: begin
204 `EXEC_INC_PC;
205 `EXEC_NEWCYCLE;
206 end
207 endcase
208 end
209 `INSN_LD_reg_HL: begin
210 case(cycle)
211 0: begin
212 address <= {registers[`REG_H], registers[`REG_L]};
213 rd <= 1;
214 end
215 1: begin
216 tmp <= rdata;
217 `EXEC_INC_PC;
218 `EXEC_NEWCYCLE;
219 end
220 endcase
221 end
222 `INSN_LD_reg_reg: begin
223 `EXEC_INC_PC;
224 `EXEC_NEWCYCLE;
225 case (opcode[2:0])
226 `INSN_reg_A: tmp <= registers[`REG_A];
227 `INSN_reg_B: tmp <= registers[`REG_B];
228 `INSN_reg_C: tmp <= registers[`REG_C];
229 `INSN_reg_D: tmp <= registers[`REG_D];
230 `INSN_reg_E: tmp <= registers[`REG_E];
231 `INSN_reg_H: tmp <= registers[`REG_H];
232 `INSN_reg_L: tmp <= registers[`REG_L];
233 endcase
234 end
235 `INSN_LD_reg_imm16: begin
236 `EXEC_INC_PC;
237 case (cycle)
238 0: begin
239 `EXEC_NEXTADDR_PCINC;
240 rd <= 1;
241 end
242 1: begin
243 `EXEC_NEXTADDR_PCINC;
244 rd <= 1;
245 end
246 2: begin `EXEC_NEWCYCLE; end
247 endcase
248 end
249 `INSN_LD_SP_HL: begin
250 case (cycle)
251 0: begin
252 tmp <= registers[`REG_H];
253 end
254 1: begin
255 `EXEC_NEWCYCLE;
256 `EXEC_INC_PC;
257 tmp <= registers[`REG_L];
258 end
259 endcase
260 end
261 `INSN_PUSH_reg: begin /* PUSH is 16 cycles! */
262 case (cycle)
263 0: begin
264 wr <= 1;
265 address <= {registers[`REG_SPH],registers[`REG_SPL]}-1;
266 case (opcode[5:4])
267 `INSN_stack_AF: wdata <= registers[`REG_A];
268 `INSN_stack_BC: wdata <= registers[`REG_B];
269 `INSN_stack_DE: wdata <= registers[`REG_D];
270 `INSN_stack_HL: wdata <= registers[`REG_H];
271 endcase
272 end
273 1: begin
274 wr <= 1;
275 address <= {registers[`REG_SPH],registers[`REG_SPL]}-1;
276 case (opcode[5:4])
277 `INSN_stack_AF: wdata <= registers[`REG_F];
278 `INSN_stack_BC: wdata <= registers[`REG_C];
279 `INSN_stack_DE: wdata <= registers[`REG_E];
280 `INSN_stack_HL: wdata <= registers[`REG_L];
281 endcase
282 end
283 2: begin /* TWIDDLE OUR FUCKING THUMBS! */ end
284 3: begin
285 `EXEC_NEWCYCLE;
286 `EXEC_INC_PC;
287 end
288 endcase
289 end
290 `INSN_POP_reg: begin /* POP is 12 cycles! */
291 case (cycle)
292 0: begin
293 rd <= 1;
294 address <= {registers[`REG_SPH],registers[`REG_SPL]};
295 end
296 1: begin
297 rd <= 1;
298 address <= {registers[`REG_SPH],registers[`REG_SPL]};
299 end
300 2: begin
301 `EXEC_NEWCYCLE;
302 `EXEC_INC_PC;
303 end
304 endcase
305 end
306 `INSN_LDH_AC: begin
307 case (cycle)
308 0: begin
309 address <= {8'hFF,registers[`REG_C]};
310 if (opcode[4]) begin // LD A,(C)
311 rd <= 1;
312 end else begin
313 wr <= 1;
314 wdata <= registers[`REG_A];
315 end
316 end
317 1: begin
318 `EXEC_NEWCYCLE;
319 `EXEC_INC_PC;
320 end
321 endcase
322 end
323 `INSN_LDx_AHL: begin
324 case (cycle)
325 0: begin
326 address <= {registers[`REG_H],registers[`REG_L]};
327 if (opcode[3]) begin // LDx A, (HL)
328 rd <= 1;
329 end else begin
330 wr <= 1;
331 wdata <= registers[`REG_A];
332 end
333 end
334 1: begin
335 `EXEC_NEWCYCLE;
336 `EXEC_INC_PC;
337 end
338 endcase
339 end
340 `INSN_ALU8: begin
341 if ((opcode[2:0] == `INSN_reg_dHL) && (cycle == 0)) begin
342 // fffffffff fuck your shit, read from (HL) :(
343 rd <= 1;
344 address <= {registers[`REG_H], registers[`REG_L]};
345 end else begin
346 `EXEC_NEWCYCLE;
347 `EXEC_INC_PC;
348 case (opcode[2:0])
349 `INSN_reg_A: tmp <= registers[`REG_A];
350 `INSN_reg_B: tmp <= registers[`REG_B];
351 `INSN_reg_C: tmp <= registers[`REG_C];
352 `INSN_reg_D: tmp <= registers[`REG_D];
353 `INSN_reg_E: tmp <= registers[`REG_E];
354 `INSN_reg_H: tmp <= registers[`REG_H];
355 `INSN_reg_L: tmp <= registers[`REG_L];
356 `INSN_reg_dHL: tmp <= rdata;
357 endcase
358 end
359 end
360 `INSN_NOP: begin
361 `EXEC_NEWCYCLE;
362 `EXEC_INC_PC;
363 end
364 `INSN_RST: begin
365 case (cycle)
366 0: begin
367 `EXEC_INC_PC; // This goes FIRST in RST
368 end
369 1: begin
370 wr <= 1;
371 address <= {registers[`REG_SPH],registers[`REG_SPL]}-1;
372 wdata <= registers[`REG_PCH];
373 end
374 2: begin
375 wr <= 1;
376 address <= {registers[`REG_SPH],registers[`REG_SPL]}-2;
377 wdata <= registers[`REG_PCL];
378 end
379 3: begin
380 `EXEC_NEWCYCLE;
381 {registers[`REG_PCH],registers[`REG_PCL]} <=
382 {10'b0,opcode[5:3],3'b0};
383 end
384 endcase
385 end
386 `INSN_RET: begin
387 case (cycle)
388 0: begin
389 rd <= 1;
390 address <= {registers[`REG_SPH],registers[`REG_SPL]};
391 end
392 1: begin
393 rd <= 1;
394 address <= {registers[`REG_SPH],registers[`REG_SPL]} + 1;
395 end
396 2: begin /* twiddle thumbs */ end
397 3: begin
398 `EXEC_NEWCYCLE;
399 // do NOT increment PC!
400 end
401 endcase
402 end
403 `INSN_CALL: begin
404 case (cycle)
405 0: begin
406 `EXEC_INC_PC;
407 `EXEC_NEXTADDR_PCINC;
408 rd <= 1;
409 end
410 1: begin
411 `EXEC_INC_PC;
412 `EXEC_NEXTADDR_PCINC;
413 rd <= 1;
414 end
415 2: begin
416 `EXEC_INC_PC;
417 end
418 3: begin
419 address <= {registers[`REG_SPH],registers[`REG_SPL]} - 1;
420 wdata <= registers[`REG_PCH];
421 wr <= 1;
422 end
423 4: begin
424 address <= {registers[`REG_SPH],registers[`REG_SPL]} - 2;
425 wdata <= registers[`REG_PCL];
426 wr <= 1;
427 end
428 5: begin
429 `EXEC_NEWCYCLE; /* do NOT increment the PC */
430 end
431 endcase
432 end
433 `INSN_JP_imm,`INSN_JPCC_imm: begin
434 case (cycle)
435 0: begin
436 `EXEC_INC_PC;
437 `EXEC_NEXTADDR_PCINC;
438 rd <= 1;
439 end
440 1: begin
441 `EXEC_INC_PC;
442 `EXEC_NEXTADDR_PCINC;
443 rd <= 1;
444 end
445 2: begin
446 if (!opcode[0]) begin // i.e., JP cc,nn
447 /* We need to check the condition code to bail out. */
448 case (opcode[4:3])
449 `INSN_cc_NZ: if (registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
450 `INSN_cc_Z: if (!registers[`REG_F][7]) begin `EXEC_NEWCYCLE; end
451 `INSN_cc_NC: if (registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
452 `INSN_cc_C: if (!registers[`REG_F][4]) begin `EXEC_NEWCYCLE; end
453 endcase
454 end
455 end
456 3: begin
457 `EXEC_NEWCYCLE;
458 end
459 endcase
460 end
461 default:
462 $stop;
463 endcase
464 state <= `STATE_WRITEBACK;
465 end
466 `STATE_WRITEBACK: begin
467 casex (opcode)
468 `INSN_LD_reg_imm8:
469 case (cycle)
470 0: begin end
471 1: case (opcode[5:3])
472 `INSN_reg_A: begin registers[`REG_A] <= rdata; end
473 `INSN_reg_B: begin registers[`REG_B] <= rdata; end
474 `INSN_reg_C: begin registers[`REG_C] <= rdata; end
475 `INSN_reg_D: begin registers[`REG_D] <= rdata; end
476 `INSN_reg_E: begin registers[`REG_E] <= rdata; end
477 `INSN_reg_H: begin registers[`REG_H] <= rdata; end
478 `INSN_reg_L: begin registers[`REG_L] <= rdata; end
479 `INSN_reg_dHL: begin /* Go off to cycle 2 */ end
480 endcase
481 2: begin end
482 endcase
483 `INSN_HALT: begin
484 /* Nothing needs happen here. */
485 /* XXX Interrupts needed for HALT. */
486 end
487 `INSN_LD_HL_reg: begin
488 /* Nothing of interest here */
489 end
490 `INSN_LD_reg_HL: begin
491 case (cycle)
492 0: begin end
493 1: begin
494 case (opcode[5:3])
495 `INSN_reg_A: registers[`REG_A] <= tmp;
496 `INSN_reg_B: registers[`REG_B] <= tmp;
497 `INSN_reg_C: registers[`REG_C] <= tmp;
498 `INSN_reg_D: registers[`REG_D] <= tmp;
499 `INSN_reg_E: registers[`REG_E] <= tmp;
500 `INSN_reg_H: registers[`REG_H] <= tmp;
501 `INSN_reg_L: registers[`REG_L] <= tmp;
502 endcase
503 end
504 endcase
505 end
506 `INSN_LD_reg_reg: begin
507 case (opcode[5:3])
508 `INSN_reg_A: registers[`REG_A] <= tmp;
509 `INSN_reg_B: registers[`REG_B] <= tmp;
510 `INSN_reg_C: registers[`REG_C] <= tmp;
511 `INSN_reg_D: registers[`REG_D] <= tmp;
512 `INSN_reg_E: registers[`REG_E] <= tmp;
513 `INSN_reg_H: registers[`REG_H] <= tmp;
514 `INSN_reg_L: registers[`REG_L] <= tmp;
515 endcase
516 end
517 `INSN_LD_reg_imm16: begin
518 case (cycle)
519 0: begin /* */ end
520 1: begin
521 case (opcode[5:4])
522 `INSN_reg16_BC: registers[`REG_C] <= rdata;
523 `INSN_reg16_DE: registers[`REG_E] <= rdata;
524 `INSN_reg16_HL: registers[`REG_L] <= rdata;
525 `INSN_reg16_SP: registers[`REG_SPL] <= rdata;
526 endcase
527 end
528 2: begin
529 case (opcode[5:4])
530 `INSN_reg16_BC: registers[`REG_B] <= rdata;
531 `INSN_reg16_DE: registers[`REG_D] <= rdata;
532 `INSN_reg16_HL: registers[`REG_H] <= rdata;
533 `INSN_reg16_SP: registers[`REG_SPH] <= rdata;
534 endcase
535 end
536 endcase
537 end
538 `INSN_LD_SP_HL: begin
539 case (cycle)
540 0: registers[`REG_SPH] <= tmp;
541 1: registers[`REG_SPL] <= tmp;
542 endcase
543 end
544 `INSN_PUSH_reg: begin /* PUSH is 16 cycles! */
545 case (cycle)
546 0: {registers[`REG_SPH],registers[`REG_SPL]} <=
547 {registers[`REG_SPH],registers[`REG_SPL]} - 1;
548 1: {registers[`REG_SPH],registers[`REG_SPL]} <=
549 {registers[`REG_SPH],registers[`REG_SPL]} - 1;
550 2: begin /* type F */ end
551 3: begin /* type F */ end
552 endcase
553 end
554 `INSN_POP_reg: begin /* POP is 12 cycles! */
555 case (cycle)
556 0: {registers[`REG_SPH],registers[`REG_SPL]} <=
557 {registers[`REG_SPH],registers[`REG_SPL]} + 1;
558 1: begin
559 case (opcode[5:4])
560 `INSN_stack_AF: registers[`REG_F] <= rdata;
561 `INSN_stack_BC: registers[`REG_C] <= rdata;
562 `INSN_stack_DE: registers[`REG_E] <= rdata;
563 `INSN_stack_HL: registers[`REG_L] <= rdata;
564 endcase
565 {registers[`REG_SPH],registers[`REG_SPL]} <=
566 {registers[`REG_SPH],registers[`REG_SPL]} + 1;
567 end
568 2: begin
569 case (opcode[5:4])
570 `INSN_stack_AF: registers[`REG_A] <= rdata;
571 `INSN_stack_BC: registers[`REG_B] <= rdata;
572 `INSN_stack_DE: registers[`REG_D] <= rdata;
573 `INSN_stack_HL: registers[`REG_H] <= rdata;
574 endcase
575 end
576 endcase
577 end
578 `INSN_LDH_AC: begin
579 case (cycle)
580 0: begin /* Type F */ end
581 1: if (opcode[4])
582 registers[`REG_A] <= rdata;
583 endcase
584 end
585 `INSN_LDx_AHL: begin
586 case (cycle)
587 0: begin /* Type F */ end
588 1: begin
589 if (opcode[3])
590 registers[`REG_A] <= rdata;
591 {registers[`REG_H],registers[`REG_L]} <=
592 opcode[4] ? // if set, LDD, else LDI
593 ({registers[`REG_H],registers[`REG_L]} - 1) :
594 ({registers[`REG_H],registers[`REG_L]} + 1);
595 end
596 endcase
597 end
598 `INSN_ALU8: begin
599 if ((opcode[2:0] == `INSN_reg_dHL) && (cycle == 0)) begin
600 /* Sit on our asses. */
601 end else begin /* Actually do the computation! */
602 case (opcode[5:3])
603 `INSN_alu_ADD: begin
604 registers[`REG_A] <=
605 registers[`REG_A] + tmp;
606 registers[`REG_F] <=
607 { /* Z */ ((registers[`REG_A] + tmp) == 0) ? 1'b1 : 1'b0,
608 /* N */ 1'b0,
609 /* H */ (({1'b0,registers[`REG_A][3:0]} + {1'b0,tmp[3:0]}) >> 4 == 1) ? 1'b1 : 1'b0,
610 /* C */ (({1'b0,registers[`REG_A]} + {1'b0,tmp}) >> 8 == 1) ? 1'b1 : 1'b0,
611 registers[`REG_F][3:0]
612 };
613 end
614 `INSN_alu_ADC: begin
615 registers[`REG_A] <=
616 registers[`REG_A] + tmp + {7'b0,registers[`REG_F][4]};
617 registers[`REG_F] <=
618 { /* Z */ ((registers[`REG_A] + tmp + {7'b0,registers[`REG_F][4]}) == 0) ? 1'b1 : 1'b0,
619 /* N */ 1'b0,
620 /* H */ (({1'b0,registers[`REG_A][3:0]} + {1'b0,tmp[3:0]} + {4'b0,registers[`REG_F][4]}) >> 4 == 1) ? 1'b1 : 1'b0,
621 /* C */ (({1'b0,registers[`REG_A]} + {1'b0,tmp} + {8'b0,registers[`REG_F][4]}) >> 8 == 1) ? 1'b1 : 1'b0,
622 registers[`REG_F][3:0]
623 };
624 end
625 `INSN_alu_AND: begin
626 registers[`REG_A] <=
627 registers[`REG_A] & tmp;
628 registers[`REG_F] <=
629 { /* Z */ ((registers[`REG_A] & tmp) == 0) ? 1'b1 : 1'b0,
630 3'b010,
631 registers[`REG_F][3:0]
632 };
633 end
634 `INSN_alu_OR: begin
635 registers[`REG_A] <=
636 registers[`REG_A] | tmp;
637 registers[`REG_F] <=
638 { /* Z */ ((registers[`REG_A] | tmp) == 0) ? 1'b1 : 1'b0,
639 3'b000,
640 registers[`REG_F][3:0]
641 };
642 end
643 `INSN_alu_XOR: begin
644 registers[`REG_A] <=
645 registers[`REG_A] ^ tmp;
646 registers[`REG_F] <=
647 { /* Z */ ((registers[`REG_A] ^ tmp) == 0) ? 1'b1 : 1'b0,
648 3'b000,
649 registers[`REG_F][3:0]
650 };
651 end
652 default:
653 $stop;
654 endcase
655 end
656 end
657 `INSN_NOP: begin /* NOP! */ end
658 `INSN_RST: begin
659 case (cycle)
660 0: begin /* type F */ end
661 1: begin /* type F */ end
662 2: begin /* type F */ end
663 3: {registers[`REG_SPH],registers[`REG_SPL]} <=
664 {registers[`REG_SPH],registers[`REG_SPL]}-2;
665 endcase
666 end
667 `INSN_RET: begin
668 case (cycle)
669 0: begin /* type F */ end
670 1: registers[`REG_PCL] <= rdata;
671 2: registers[`REG_PCH] <= rdata;
672 3: begin
673 {registers[`REG_SPH],registers[`REG_SPL]} <=
674 {registers[`REG_SPH],registers[`REG_SPL]} + 2;
675 if (opcode[4]) /* RETI */
676 ie <= 1;
677 end
678 endcase
679 end
680 `INSN_CALL: begin
681 case (cycle)
682 0: begin /* type F */ end
683 1: tmp <= rdata; // tmp contains newpcl
684 2: tmp2 <= rdata; // tmp2 contains newpch
685 3: begin /* type F */ end
686 4: registers[`REG_PCH] <= tmp2;
687 5: begin
688 {registers[`REG_SPH],registers[`REG_SPL]} <=
689 {registers[`REG_SPH],registers[`REG_SPL]} - 2;
690 registers[`REG_PCL] <= tmp;
691 end
692 endcase
693 end
694 `INSN_JP_imm,`INSN_JPCC_imm: begin
695 case (cycle)
696 0: begin /* type F */ end
697 1: tmp <= rdata; // tmp contains newpcl
698 2: tmp2 <= rdata; // tmp2 contains newpch
699 3: {registers[`REG_PCH],registers[`REG_PCL]} <=
700 {tmp2,tmp};
701 endcase
702 end
703 default:
704 $stop;
705 endcase
706 state <= `STATE_FETCH;
707 end
708 endcase
709endmodule
This page took 0.029442 seconds and 4 git commands to generate.