module Execute( input clk, input Nrst, /* XXX not used yet */ input stall, input flush, input inbubble, input [31:0] pc, input [31:0] insn, input [31:0] cpsr, input [31:0] op0, input [31:0] op1, input [31:0] op2, input carry, output reg outstall = 0, output reg outbubble = 1, output reg write_reg = 1'bx, output reg [3:0] write_num = 4'bxxxx, output reg [31:0] write_data = 32'hxxxxxxxx ); reg mult_start; reg [31:0] mult_acc0, mult_in0, mult_in1; wire mult_done; wire [31:0] mult_result; Multiplier multiplier( .clk(clk), .Nrst(Nrst), .start(mult_start), .acc0(mult_acc0), .in0(mult_in0), .in1(mult_in1), .done(mult_done), .result(mult_result)); endmodule module Multiplier( input clk, input Nrst, /* XXX not used yet */ input start, input [31:0] acc0, input [31:0] in0, input [31:0] in1, output reg done = 0, output reg [31:0] result); reg [31:0] bitfield; reg [31:0] multiplicand; reg [31:0] acc; always @(posedge clk) begin if (start) begin bitfield <= in0; multiplicand <= in1; acc <= acc0; done <= 0; end else begin bitfield <= {2'b00, bitfield[31:2]}; multiplicand <= {multiplicand[29:0], 2'b00}; acc <= acc + (bitfield[0] ? multiplicand : 0) + (bitfield[1] ? {multiplicand[30:0], 1'b0} : 0); if (bitfield == 0) begin result <= acc; done <= 1; end end end endmodule /* XXX is the interface correct? */ module ALU( input clk, input Nrst, /* XXX not used yet */ input [31:0] in0, input [31:0] in1, input [31:0] cpsr, input [3:0] op, input setflags, input shifter_carry, output reg [31:0] result, output reg [31:0] cpsr_out, output reg set ); wire [31:0] res; wire flag_n, flag_z, flag_c, flag_v, setres; wire [32:0] sum, diff, rdiff; assign sum = {1'b0, in0} + {1'b0, in1}; assign diff = {1'b0, in0} - {1'b0, in1}; assign rdiff = {1'b0, in1} + {1'b0, in0}; /* TODO XXX flag_v not set correctly */ always @(*) begin res = 32'hxxxxxxxx; setres = 1'bx; flag_c = cpsr[`CPSR_C]; flag_v = cpsr[`CPSR_V]; case(op) `ALU_AND: begin res = in0 & in1; flag_c = shifter_carry; setres = 1'b1; end `ALU_EOR: begin res = in0 ^ in1; flag_c = shifter_carry; setres = 1'b1; end `ALU_SUB: begin {flag_c, res} = diff; setres = 1'b1; end `ALU_RSB: begin {flag_c, res} = rdiff; setres = 1'b1; end `ALU_ADD: begin {flag_c, res} = sum; setres = 1'b1; end `ALU_ADC: begin {flag_c, res} = sum + cpsr[`CPSR_C]; setres = 1'b1; end `ALU_SBC: begin {flag_c, res} = diff - (~cpsr[`CPSR_C]); setres = 1'b1; end `ALU_RSC: begin {flag_c, res} = rdiff - (~cpsr[`CPSR_C]); setres = 1'b1; end `ALU_TST: begin res = in0 & in1; flag_c = shifter_carry; setres = 1'b0; end `ALU_TEQ: begin res = in0 ^ in1; flag_c = shifter_carry; setres = 1'b0; end `ALU_CMP: begin {flag_c, res} = diff; setres = 1'b0; end `ALU_CMN: begin {flag_c, res} = sum; setres = 1'b0; end `ALU_ORR: begin res = in0 | in1; flag_c = shifter_carry; setres = 1'b1; end `ALU_MOV: begin res = in1; flag_c = shifter_carry; setres = 1'b1; end `ALU_BIC: begin res = in0 & (~in1); flag_c = shifter_carry; setres = 1'b1; end `ALU_MVN: begin res = ~in1; flag_c = shifter_carry; setres = 1'b1; end endcase end always @(*) begin flag_z = (res == 0); flag_n = res[31]; end always @(posedge clk) begin result <= res; cpsr_out <= setflags ? {flag_n, flag_z, flag_c, flag_v, cpsr[27:0]} : cpsr; set <= setres; end endmodule